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Splitting Messages in the Dark–
Rate-Splitting Multiple Access for FDD Massive

MIMO without CSI Feedback
Namhyun Kim, Ian P. Roberts, and Jeonghun Park

Abstract—A critical hindrance in realizing frequency divi-
sion duplex (FDD) massive multi-input multi-output (MIMO)
systems is the overhead associated with the downlink (DL)
channel state information at the transmitter (CSIT) acquisition.
To address this, we propose a novel framework that eliminates
the need for CSI feedback, while achieving robust sum spectral
efficiency (SE). Specifically, by leveraging partial frequency
invariance of channel parameters, we reconstruct the DL CSIT
using uplink (UL) pilots with the 2D-Newtonized orthogonal
matching pursuit (2D-NOMP) algorithm. Due to discrepancies
between the two disjoint bands, however, perfect DL CSIT
acquisition is infeasible; resulting in multi-user interference
(MUI). To account for this, we reformulate the sum SE
maximization problem using the reconstructed channel and its
error covariance matrix (ECM). Then, we propose an ECM
estimation method based on the observed Fisher information
matrix and introduce a precoder optimization technique with
rate-splitting multiple access (RSMA). Our simulation results
verify the validity of the proposed framework in the practical
FDD massive MIMO scenarios, highlighting the essential role
of ECM estimation in mitigating MUI to attain RSMA gains.

Index Terms—FDD massive MIMO, Error covariance es-
timation, Rate-splitting multiple access, Generalized power
iteration.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) systems
are key to the future of wireless communications, effectively
increasing spectral efficiency (SE) and reducing costs [1],
[2]. To fully realize these benefits, accurate channel state in-
formation at the transmitter (CSIT) is critical. In this context,
time division duplexing (TDD)-based channel estimation has
been preferred for its efficiency from channel reciprocity [3].

Nonetheless, there have been persistent research efforts
aimed at realizing the advantages of massive MIMO for
frequency division duplexing (FDD) systems as well [4],
[5]. The enduring importance of these studies is usually un-
derscored by the following considerations. i) The majority of
the bandwidth is allocated to the FDD mode in sub-6 GHz,
which still dominates the cellular market today [6]. ii) FDD
typically offers superior coverage performance compared to
TDD [3], allows simultaneous uplink (UL) and downlink
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(DL) transmissions, catering to delay-sensitive applications
[7]. Despite these benefits, FDD massive MIMO systems
face significant challenges as the number of base station (BS)
antennas grows, primarily due to the prohibitive complexity
of CSIT acquisition from the lack of channel reciprocity
[1], [8]. In this paper, we take a step toward addressing this
problem while maximizing the sum SE performance.

A. Prior Work

We categorize the prior work on realizing FDD massive
MIMO systems into two primary approaches: those aimed
at reducing CSIT overhead and those aimed at mitigating
multi-user interference (MUI).

1) CSIT overhead reduction approaches: One of the main
principles of these studies is that the channel characteristics
in FDD MIMO can be compressed in certain domains,
which is helpful to reduce the overhead [9]. For instance,
a distributed DL CSIT compression method was devel-
oped by [8], which harnessed the shared sparsity structures
from local scatterers. In [10], a super-resolution compressed
sensing (CS) method was proposed in the presence of the
beam squint effect in mmWave wideband MIMO-OFDM
systems. Recently, methods not relying on a specific com-
pressible basis but rather on data-driven approaches have
also been studied. For example, in [11], CS-ReNet was
devised, which jointly exploits deep learning techniques
and CS-based compression. For example, [12] proposed a
multiple-measurement-vectors learned approximate message
passing (MMV-LAMP) network to enable efficient channel
reconstruction of the spatial-frequency channel matrix, using
channels’ structured sparsity. In [13], it was proposed to use
deep learning to map channels from one set of antennas
and frequency band to channels of another set, significantly
reducing the training overhead. An extensive overview of
deep learning based CSIT acquisition was provided in [14].

In a different line of research, [15] presented an intriguing
idea: the DL channel in FDD can be fully reconstructed by
UL training without CSI feedback. Specifically, DL channel
parameters, such as the angle of departure (AoD), delay,
and path gains, can be obtained from the UL channel,
assuming that the frequency difference of UL and DL is
small enough relative to the carrier frequency. Extensions
of this concept were discussed in [4], [5], [16], [17], with
[18] supported by measurement campaigns. In [19], channel
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quality indicator (CQI) feedback was omitted by exploiting a
machine learning (ML) based technique for reducing delay.
However, the accuracy of the reconstructed DL channel
is sometimes reported to be limited due to discrepancies
between the UL and DL channels, as shown in [4], [16]. It
is important to note that this imperfection can significantly
undermine the SE performance in DL due to increased MUI.

2) MUI mitigation approaches: In the presence of im-
perfect CSIT, MUI mitigation strategies have been explored
as another approach to unleash the gains of FDD massive
MIMO systems. In [20], an interference alignment scheme
was developed to manage MUI caused from delayed CSIT.
In [21], it was shown that when users are sufficiently
spatially separated, their channel covariance matrices have
non-overlapping subspaces, leading to reduction of MUI.

Recently, an unorthodox type of multiple access, referred
as rate-splitting multiple access (RSMA), has also been ac-
tively explored to handle the MUI problem [22]. In RSMA,
users partially decode MUI through the introduction of a
common message and successive interference cancellation
(SIC), leading to interference decoding gains. Building on
this, [23] presented a linear precoder design based on the
weighted minimum mean square error (WMMSE) method,
using the sample average approximation (SAA) technique
to account for imperfect CSIT in RSMA. Beyond this,
[24] proposed a generalized power iteration (GPI)-based
precoder optimization, assuming that the channel covariance
and DL channel error covariance are given in TDD MIMO.
In addition, a bilinear precoding method in FDD was in-
troduced in [25], considering that the knowledge of channel
covariance is provided. A fractional programming (FP) based
RSMA precoding method was developed in [26], wherein
the optimal beamforming structure of RSMA is incorporated.

Notice that the two approaches—CSIT overhead reduction
and MUI mitigation—are closely related; yet most previous
studies have largely existed in isolation, focusing on one
approach while overlooking the other. For instance, effi-
cient linear precoding methods for RSMA were explored in
several prior work by considering various CSIT acquisition
models; such as FDD MIMO with limited feedback [26] or
FDD MIMO with analog feedback [25]. However, no prior
work has explored the case where CSI feedback is entirely
omitted in FDD MIMO. A key challenge in this case is that,
since the DL CSIT cannot be directly obtained, it must be
reconstructed from side information, such as UL reference
signals [15], [18]. Nonetheless, the impact of the DL CSIT
reconstruction algorithm on RSMA performance is not clear
[15], [18], thus it is not yet known how to incorporate such
DL CSIT reconstruction into RSMA precoder design. For
this reason, jointly tackling the DL channel reconstruction
and the RSMA precoder design remains an open problem.

B. Contributions

In this paper, we put forth a comprehensive approach to
reduce the CSIT acquisition overhead and also efficiently

mitigate MUI. Specifically, we consider an FDD massive
MIMO system without direct CSI feedback, and instead
estimate the DL channel based on UL pilots. To accomplish
this, we employ the 2D-Newtonized orthogonal matching
pursuit (NOMP) algorithm that extracts key parameters of
UL channels, such as angle of arrival (AoA), delay, and
path gain [18]. With this, we rebuild the DL channel by
leveraging partial frequency invariance between UL and
DL channels [4], [16], [18]. However, due to the inherent
discrepancies between the UL and DL channels, CSIT errors
are unavoidable, which results in MUI that undermines the
SE gains. To resolve this, we employ RSMA.

Nonetheless, realizing the full potential of RSMA is not
straightforward. This is mainly because it is difficult to cap-
ture the impact of imperfect CSIT reconstruction on RSMA
performance, making it challenging to efficiently design the
precoder that accounts for the CSIT errors. To resolve this,
we characterize the achievable SE as a function of the
precoding vectors, the reconstructed CSIT, and the CSIT
error covariance matrix (ECM). In our characterization, we
find that the ECM plays a crucial role in designing precoders
that effectively mitigate the MUI. Since the ECM cannot be
obtained in a conventional way due to non-linearity of 2D-
NOMP, we develop a novel ECM estimation method. Our
rationale is built on the Cramér-Rao lower bound (CRLB) of
DL channel reconstruction, where its trace provides a lower
bound for MSE. However, computing the CRLB requires
true channel parameters, which is not feasible in practice. To
address this, we use the observed Fisher information matrix
(O-FIM) [27]–[29], which requires only the observed UL
reference signals. This enables us to compute the CRLB
without the ground truth value or CSI error distribution,
thereby improving the practicability of our method.

Subsequently, harnessing the estimated ECM, we propose
a precoder optimization method to solve the sum SE maxi-
mization problem. Specifically, we derive the Karush-Kuhn-
Tucker (KKT) condition for maximizing the achievable sum
SE. This can then be interpreted as an eigenvector-dependent
nonlinear eigenvalue problem. Accordingly, by finding the
leading eigenvector of the derived KKT condition, we reach
a locally optimal solution that maximizes the sum SE.

Through numerical simulations, we demonstrate that the
proposed method offers significant improvement in terms
of sum SE compared to existing methods. For instance, we
observe up to a 22.7% increase in sum SE performance
compared to other baseline spatial division multiple access
(SDMA) methods when no CSI feedback is used. Crucially,
we reveal that these gains primarily stem from our ECM esti-
mation. By accurately estimating the ECM and incorporating
this into the precoder optimization, we properly account
for the CSIT errors and the resultant MUI. Specifically,
when incorporating the estimated ECM into the precoder
design, we observe up to a 21.1% improvement in sum SE
performance compared to a case that does not rely on the es-
timated ECM. In addition, we also examine a case where the
number of DL channel paths is reduced compared to the UL.
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We observe that the proposed method still provides robust
performance with our appropriate ECM estimation. Further,
we present that our framework unlocks new possibilities
for enabling low-latency FDD massive MIMO transmission.
Specifically, we analyze the latency overhead associated with
the typical 5G-NR process of CSI feedback. Based on this,
we compare the achievable sum SE between the perfect
CSIT case (with feedback) and the no CSI feedback case,
offering insights into the trade-off between latency overhead
and achievable sum SE. This trade-off highlights how our
framework provides an effective alternative for conventional
FDD massive MIMO transmission, significantly reducing
latency with only a marginal sacrifice in SE performance.

Notation: The superscripts (·)T, (·)H, (·)−1, (·)† denote
the transpose, Hermitian, matrix inversion, and Moore-
Penrose pseudo-inverse respectively. I𝑁 is the identity ma-
trix of size 𝑁 × 𝑁 , Assuming that A1, ...,A𝑁 ∈ C𝐾×𝐾 ,
A = diag (A1, ...,A𝑛, ...,A𝑁 ) is a block-diagonal matrix
concatenating A1, ...,A𝑁 . We use ⌊·⌋, ⌈·⌉ to denote rounding
a decimal number to its nearest lower and higher integers,
respectively. We define [𝐾] as the set of natural numbers less
than or equal to 𝐾 . A ◦B denotes the Hadamard product of
the two matrices, A and B.

II. SYSTEM MODEL

We consider the multi-user FDD massive MIMO system,
where the BS is equipped with 𝑁 antennas and serves
𝐾 single-antenna users. We also assume that the channel
remains time-invariant from the transmission of the UL
pilots to the DL precoding [5], [18].

A. Channel Model

With orthogonal frequency division multiplexing (OFDM)
employed, we denote the number of sub-carriers used for
pilots as 𝑀 and the spacing between these sub-carriers as
Δ 𝑓 which implicitly defines the bandwidth of each resource
block. That is, these 𝑀 pilots are uniformly spaced, and
the total bandwidth they span is 𝐵 = 𝑀Δ 𝑓 . Following the
multipath channel model in [15], [18], we represent the UL
channel on the 𝑚-th sub-carrier of user 𝑘 ∈ [𝐾] as

hul
𝑘 [𝑚] =

𝐿ul
𝑘∑︁

ℓ=1
𝛼ul
𝑘,ℓa

(
𝜃ul
𝑘,ℓ ;𝜆

ul
𝑚

)
𝑒
− 𝑗2𝜋𝑚Δ 𝑓 𝜏ul

𝑘,ℓ ∈ C𝑁×1, (1)

where 𝛼ul
𝑘,ℓ

is the complex path gain of the ℓ-th path, and
a(𝜃ul

𝑘,ℓ
;𝜆ul
𝑚) is the ULA array response defined sub-carrier

specifically as

a(𝜃ul
𝑘,ℓ ;𝜆

ul
𝑚) =

[
1, 𝑒
− 𝑗2𝜋 𝑑ul

𝜆ul
𝑚

sin 𝜃ul
𝑘,ℓ
, . . . , 𝑒

− 𝑗2𝜋 (𝑁−1) 𝑑ul

𝜆ul
𝑚

sin 𝜃ul
𝑘,ℓ

]T

,

(2)

where we denote the AoA as 𝜃ul
𝑘,ℓ

, the wavelength of the 𝑚-
th UL sub-carrier as 𝜆ul

𝑚, and the antenna spacing as 𝑑ul with
𝑑ul = 𝜆ul

c /2, where 𝜆ul
c is the wavelength of carrier frequency

of UL. Further, we denote the propagation delay as 𝜏ul
𝑘,ℓ

with
0 < 𝜏ul

𝑘,ℓ
< 1/Δ 𝑓 and the number of paths as 𝐿ul

𝑘
. We also

assume that the baseband UL signal occupies the interval
[−𝐵/2, 𝐵/2]1. Correspondingly, index 𝑚 satisfies ⌊ −𝑀2 ⌋ ≤
𝑚 ≤ ⌈𝑀2 ⌉ − 1, 𝑚 ∈ Z.

To model the distribution of the complex path gain
𝛼ul
𝑘,ℓ

, we use the Rician distribution, i.e. 𝛼ul
𝑘,ℓ

∼

CN

(√︂
𝜅𝑘𝜎

2
path,𝑘

𝜅𝑘+1 ,
𝜎2

path,𝑘
𝜅𝑘+1

)
,∀ℓ. The parameter 𝜅𝑘 denotes the

Rician factor of user 𝑘 and represents the relative strength of
the line-of-sight (LoS) component compared to the non-line-
of-sight (NLoS) component. The parameter 𝜎2

path,𝑘 denotes
the average channel power of each path, i.e. E[|𝛼ul

𝑘,ℓ
|2] =

𝜎2
path,𝑘 ,∀ℓ, where we define 𝜎2

path,𝑘 = 1/(𝑁𝐿ul
𝑘
) to nor-

malize the channel in (1) to unit variance. We note that
𝛼𝑘,ℓ , 𝜃𝑘,ℓ , 𝜏𝑘,ℓ are consistent across the sub-carriers within
operating bandwidth, under the assumption that the band-
width is much smaller than the carrier frequency [5], [18].

Notice that in (1), we describe the UL channel vector
(hul
𝑘
[𝑚] ∈ C𝑁×1) with respect to the OFDM sub-carrier

index 𝑚. This signal representation in the frequency domain
is crucial for the joint estimation of angles (𝜃ul

𝑘,ℓ
) and

delays (𝜏ul
𝑘,ℓ

) during the UL training phase (as explained in
Section III) as demonstrated in [15]. In contrast, in other
parts—such as defining performance metric and design-
ing precoders—the sub-carrier notation becomes irrelevant.
Once reconstructed DL channel is obtained during UL
training, the performance metric, i.e., SE, depends solely
on the composite DL channel. In our approach, the channel
estimate for each narrowband resource block is readily
available after identifying the DL channel parameters [18],
[23], [26]. Consequently, the precoder design algorithm is
applied independently to each resource block, making it
unnecessary to retain the sub-carrier index 𝑚 to define the
DL channel. Accordingly, assuming the difference between
the UL carrier frequency and the target DL resource block
is 𝑓 , the DL channel as a function of 𝑓 is given by

h𝑘 ( 𝑓 ) =
𝐿dl
𝑘∑︁

ℓ=1
𝛼dl
𝑘,ℓa

(
𝜃dl
𝑘,ℓ ;𝜆

dl
)
𝑒
− 𝑗2𝜋 𝑓 𝜏dl

𝑘,ℓ ∈ C𝑁×1, (3)

where 𝛼dl
𝑘,ℓ
, 𝜃dl
𝑘,ℓ
, 𝜏dl
𝑘,ℓ
, 𝐿dl

𝑘
are defined in the same way as

for the UL channel, and 𝜆dl denotes the wavelength of the
corresponding resource block.

As presented in [15], [17] and also supported by an actual
measurement campaign [4], the UL and DL channels share
several frequency-invariant parameters. We summarize the
partial reciprocity relationship for all (𝑘, ℓ) as follows:
• Number of channel paths: 𝐿ul

𝑘
= 𝐿dl

𝑘
≜ 𝐿𝑘 ,

• AoA (or AoD): 𝜃ul
𝑘,ℓ

= 𝜃dl
𝑘,ℓ

,
• Propagation delay: 𝜏ul

𝑘,ℓ
= 𝜏dl

𝑘,ℓ
,

• Complex path gain: 𝛼ul
𝑘,ℓ
≈ 𝛼dl

𝑘,ℓ
.

1This follows the convention where the carrier frequency of the UL band
is set to zero [5]. Accordingly, we can represent the DL channel as a
function of the frequency difference between the DL and UL.
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We emphasize the critical role of frequency-invariant pa-
rameters in reconstructing the DL channel from UL training.
However, the last assumption of frequency-invariant com-
plex path gain remains controversial. Although [15], [17]
claimed that each path gain is also frequency-invariant, i.e.
𝛼ul
𝑘,ℓ

= 𝛼dl
𝑘,ℓ
,∀(𝑘, ℓ), the real-world measurement campaign

[16], [18] reported that the instantaneous channel gains may
differ. Instead, they tend to have a highly correlated second
moment [16]. To account for this, we adopt the DL channel
gain model using the first-order Gauss-Markov model:

𝛼dl
𝑘,ℓ = 𝜂𝑘,ℓ𝛼

ul
𝑘,ℓ +

√︃
1 − 𝜂2

𝑘,ℓ
𝛽𝑘,ℓ , 𝛽𝑘,ℓ ∼ CN(0, 𝜎2

path,𝑘),∀ℓ,
(4)

where 𝜂𝑘,ℓ is the correlation between ℓ-th path of the DL and
UL channels for user 𝑘 . For example, if 𝜂𝑘,ℓ = 1,∀(𝑘, ℓ), our
model (4) reduces to the case of perfect reciprocity, while
𝜂𝑘,ℓ = 0,∀(𝑘, ℓ) indicates that UL/DL gains are independent,
where our model includes [15], [17] as an edge case and will
allow us to investigate performance as a function of path
correlation.

B. Signal Model

We consider RSMA, which is a robust multiple access
technique against imperfect CSIT [24], [25]. In this paper,
we employ 1-layer RSMA so that only one layer of common
messages for the all users is used [30]. Specifically, the
intended message 𝑊𝑘 for user 𝑘 is split into a common
part 𝑊c,𝑘 and a private part 𝑊p,𝑘 . Then, the common parts
of entire users’ messages are combined to yield a common
message 𝑊c. Subsequently, the 𝐾 +1 messages (the common
message𝑊c and the 𝐾 private messages,𝑊p,1, . . . ,𝑊p,𝐾 ) are
encoded into the symbols 𝑠c, 𝑠p,1, . . . , 𝑠p,𝐾 respectively. Note
that the common message 𝑠c is designed to be decodable to
the all users, which implies that the common rate is not
larger than the minimum common rate of entire users.

The transmit signal at the BS is then formed by combining
the messages and linear precoding vectors as

x = fc𝑠c +
𝐾∑︁
𝑘=1

f𝑘𝑠𝑘 , (5)

where fc, f𝑘 ∈ C𝑁×1 are precoding vectors for the common
and private stream for user 𝑘 , respectively. The transmit
power constraint is ∥fc∥2 +

∑𝐾
𝑘=1 ∥f𝑘 ∥

2 ≤ 1. In addition,
we assume Gaussian signaling with power constraint 𝑃, i.e.,
𝑠c, 𝑠𝑘 ∼ CN(0, 𝑃). At user 𝑘 ∈ [𝐾], the received signal is

𝑟𝑘 ( 𝑓 ) = hH
𝑘 ( 𝑓 )fc𝑠c + hH

𝑘 ( 𝑓 )f𝑘𝑠𝑘 +
𝐾∑︁

𝑝=1, 𝑝≠𝑘
hH
𝑘 ( 𝑓 )f𝑝𝑠𝑝 + 𝑧𝑘 ,

(6)

where 𝑧𝑘 ∼ CN(0, 𝜎2) is additive white Gaussian noise
(AWGN).

III. DL CHANNEL RECONSTRUCTION AND
PERFORMANCE CHARACTERIZATION

In this section, we explain a DL channel reconstruction
method using the UL reference signal without CSI feedback.
We then derive the achievable SE with the used DL channel
reconstruction method.

A. DL Channel Reconstruction
To begin, we define a vector u(𝜏, 𝜃) ∈ C𝑀𝑁×1 as the

received UL training signal across 𝑀 sub-carriers and 𝑁

antennas as follows:

[u(𝜏, 𝜃)]𝑚,𝑛 = 𝑒
− 𝑗2𝜋 𝑛𝑑

𝜆ul
𝑚

sin 𝜃ul
𝑘,ℓ
𝑒− 𝑗2𝜋 ( ⌊

−𝑀
2 ⌋+𝑚−1)△ 𝑓 𝜏𝑘,ℓ , (7)

where [·]𝑚,𝑛 denotes the element of the vector associated
with the 𝑚-th sub-carrier and 𝑛-th antenna. Assuming an
all-ones UL sounding reference signal is used, the received
signal is given by

y𝑘 =
𝐿𝑘∑︁
ℓ=1

𝛼ul
𝑘,ℓu(𝜏

ul
𝑘,ℓ , 𝜃

ul
𝑘,ℓ) + w𝑘 ∈ C𝑀𝑁×1, (8)

where w𝑘 is AWGN. Our objective is to predict the DL
channel h𝑘 ( 𝑓 ) using y𝑘 . To this end, we first obtain the UL
triplet path parameters, i.e.,

{(
�̂�ul
𝑘,ℓ
, 𝜏ul
𝑘,ℓ
, 𝜃ul
𝑘,ℓ

)}
ℓ=1,...,𝐿𝑘

from

y𝑘 and rebuild the DL channel ĥ𝑘 ( 𝑓 ) by incorporating the
frequency invariance. As demonstrated in [31], the number
of channel paths in FDD massive MIMO is significantly
smaller than the number of BS antennas, allowing us to
formulate the UL channel parameter extraction problem as a
CS problem. For solving this, we employ a variant of orthog-
onal matching pursuit, called 2D-NOMP. As demonstrated in
[18], the 2D-NOMP algorithm has shown to be suitable for
real-time hardware implementations. We explain the basic
principle and detailed process of the 2D-NOMP as follows.

For every iteration, the 2D-NOMP algorithm finds the
maximum likelihood (ML) estimate of the angle, delay, and
channel gain of each path in UL, say (�̃�𝑘,ℓ , 𝜏𝑘,ℓ , 𝜃𝑘,ℓ). With
the estimate, the residual signal at the end of the 𝑖-th iteration
is computed by

yr = y𝑘 −
𝑖∑︁
ℓ=1

�̃�𝑘,ℓu(𝜏𝑘,ℓ , 𝜃𝑘,ℓ), (9)

and yr is initialized to y𝑘 . The ML estimate of the pa-
rameters is attained by minimizing the residual power
∥yr − �̃�𝑘,𝑖u(𝜏𝑘,𝑖 , 𝜃𝑘,𝑖)∥2, which is equivalent to maximizing

𝑓yr (𝛼𝑘,ℓ , 𝜏𝑘,ℓ , 𝜃𝑘,ℓ)
≜ 2Re{yH

r 𝛼𝑘,ℓu(𝜏𝑘,ℓ , 𝜃𝑘,ℓ)} − |𝛼𝑘,ℓ |2∥u(𝜏𝑘,ℓ , 𝜃𝑘,ℓ)∥2. (10)

Based on this, the three following steps are performed during
the 𝑖-th iteration until a stopping criterion is met.

1. New detection: To maximize (10), the estimate for 𝑖-th
path for user 𝑘 , i.e., (𝜏𝑘,𝑖 , 𝜃𝑘,𝑖) is chosen from a predefined
parameter grid, Ω as

(𝜏𝑘,𝑖 , 𝜃𝑘,𝑖) = arg max
(𝜏,𝜃 ) ∈Ω

|uH (𝜏, 𝜃)yr |2
∥u(𝜏, 𝜃)∥2

. (11)
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With (𝜏𝑘,𝑖 , 𝜃𝑘,𝑖), we obtain an estimate of the channel gain
as

�̃�𝑘,𝑖 =
uH (𝜏𝑘,𝑖 , 𝜃𝑘,𝑖)yr

∥u(𝜏𝑘,𝑖 , 𝜃𝑘,𝑖)∥2
. (12)

2. Newton refinement: Since the parameter is chosen
within a finite grid, Ω, an off-grid error may occur as a
result. Then, in pursuit of reducing the off-grid error, we
define the Newton step and gradient step as

nyr (�̃�, 𝜏, 𝜃) = −∇2
(𝜏,𝜃 ) 𝑓

−1
yr (�̃�, 𝜏, 𝜃)∇(𝜏,𝜃 ) 𝑓yr (�̃�, 𝜏, 𝜃), (13)

gyr (�̃�, 𝜏, 𝜃) = ∇(𝜏,𝜃 ) 𝑓yr (�̃�, 𝜏, 𝜃). (14)

We then refine (𝜏𝑘,𝑖 , 𝜃𝑘,𝑖) obtained in (11) over the con-
tinumm via Newton’s method [32], i.e.,

(𝜏𝑘,𝑖 , 𝜃𝑘,𝑖) = (𝜏𝑘,𝑖 , 𝜃𝑘,𝑖)

+
{

nyr (�̃�𝑘,𝑖 , 𝜏𝑘,𝑖 , 𝜃𝑘,𝑖), if ∇2
(𝜏,𝜃 ) 𝑓yr (�̃�𝑘,𝑖 , 𝜏𝑘,𝑖 , 𝜃𝑘,𝑖) ≺ 0,

𝜇gyr (�̃�, 𝜏𝑘,𝑖 , 𝜃𝑘,𝑖), else,
(15)

where 𝜇 is the learning rate. After this refinement, the
corresponding gain of the 𝑖-th path is recalculated as in (12).
We cyclically repeat this refinement process 𝑅𝑐 times for all
the paths found up to this point.

3. Update of gains: In this step, by using the estimates
(𝜏𝑘,ℓ , 𝜃𝑘,ℓ),∀ℓ ∈ [𝑖] obtained in the previous step, we lastly
calibrate the gains of all the paths with least squares (LS):

[�̃�𝑘,1, �̃�𝑘,2, . . . , �̃�𝑘,𝑖] = Ũ†y𝑘 , (16)

where Ũ = [u(𝜏𝑘,1, 𝜃𝑘,1), u(𝜏𝑘,2, 𝜃𝑘,2), . . . , u(𝜏𝑘,𝑖 , 𝜃𝑘,𝑖)].
The algorithm terminates once a stopping criterion is

met, often based on the false alarm rate. We denote
the final algorithm output as

{
�̂�ul
𝑘,ℓ
, 𝜏ul
𝑘,ℓ
, 𝜃ul
𝑘,ℓ

}
ℓ=1,...,𝐿𝑘

.

Building on this, we let
{
�̂�dl
𝑘,ℓ
, 𝜏dl
𝑘,ℓ
, 𝜃dl
𝑘,ℓ

}
ℓ=1,...,𝐿𝑘

={
𝜂𝑘,ℓ �̂�

ul
𝑘,ℓ
, 𝜏ul
𝑘,ℓ
, 𝜃ul
𝑘,ℓ

}
ℓ=1,...,𝐿𝑘

by incorporating the UL/DL
frequency invariance property and leveraging the channel
gain model in (4). As shown [18], the 2D-NOMP algorithm
achieves near-optimal mean squared error (MSE) perfor-
mance, approaching the CRLB level.

Finally, we reconstruct the DL channel as

ĥ𝑘 ( 𝑓 ) =
𝐿𝑘∑︁
ℓ=1

�̂�dl
𝑘,ℓa

(
𝜃dl
𝑘,ℓ ;𝜆

dl
)
𝑒
− 𝑗2𝜋 𝑓 �̂�dl

𝑘,ℓ . (17)

For conciseness, h𝑘 and ĥ𝑘 will represent the h𝑘 ( 𝑓 ) and
ĥ𝑘 ( 𝑓 ), respectively, and 𝑟𝑘 will represent the 𝑟𝑘 ( 𝑓 ) hereafter.
Before formulating the problem with the estimated channel,
we briefly explain user grouping in the following remark.

B. SE Characterization and Problem Formulation

In this subsection, we characterize the SE under the
assumption that the frequency difference between UL and
DL is 𝑓 . Then we formulate the main problem of this paper.
As shown in [23], [24], the exact form of the instantaneous

SE for both the common and private messages in each fading
block, given imperfect CSIT, cannot be expressed in closed
form. To resolve this, we derive a useful lower bound on
the SE. Let us model the relationship between the true and
reconstructed channel as h𝑘 = ĥ𝑘 + e𝑘 , where e𝑘 represents
the DL channel reconstruction error. Then, we can express
the average power of the received signal at user 𝑘 in (6),

normalized by 𝑃, (i.e.,
E
{
|𝑟𝑘 |2

}
𝑃
) as

𝑆c︷ ︸︸ ︷
|ĥH
𝑘 fc |2 +

𝑆𝑘︷  ︸︸  ︷
|ĥH
𝑘 f𝑘 |2 +

𝐼𝑘︷                                                ︸︸                                                ︷
𝐾∑︁
𝑝≠𝑘

|ĥH
𝑘 f𝑝 |2 + |eH

𝑘 fc |2 +
𝐾∑︁
𝑝=1
|eH
𝑘 f𝑝 |2 +

𝜎2

𝑃
.︸                                                              ︷︷                                                              ︸

𝐼c

(18)

Subsequently, by treating e𝑘 as independent Gaussian noise,
we characterize a lower bound on the instantaneous SE of
𝑠c as

𝑅ins.
c (𝑘)

(𝑎)
≥ E{e𝑘 |ψ̂𝑘 }

[
log2

(
1 + 𝑆c𝐼

−1
c

)]
(19)

(𝑏)
≥ log2

©«
1 +

|ĥH
𝑘
fc |2{∑𝐾

𝑝=1 |ĥH
𝑘
f𝑝 |2 + fH

c E
[
e𝑘eH

𝑘

]
fc

+∑𝐾
𝑝=1 fH

𝑝E
[
e𝑘eH

𝑘

]
f𝑝+ 𝜎

2

𝑃

} ª®®®®®®¬
(20)

(𝑐)
= log2

©«
1 +

|ĥH
𝑘
fc |2{∑𝐾

𝑝=1 |ĥH
𝑘
f𝑝 |2 + fH

c 𝚽𝑘fc

+∑𝐾
𝑝=1 fH

𝑝𝚽𝑘f𝑝 + 𝜎2

𝑃

} ª®®®®®®¬
(21)

≜ 𝑅lb
c (𝑘).

where (𝑎) follows from treating the DL channel reconstruc-
tion error as independent Gaussian noise which gives the
worst case mutual information [24], (𝑏) follows Jensen’s
inequality, and (𝑐) comes from E{e𝑘 |ψ̂𝑘 } [e𝑘e

H
𝑘
] = 𝚽𝑘 , where

we omit the notation of {e𝑘 |ψ̂𝑘} due to the space limitation.
To guarantee the decodability of 𝑠c for the users in [𝐾], the
code rate of 𝑠c is determined as min𝑘∈[𝐾 ]{𝑅lb

c (𝑘)}. Provided
that the proper code rate is used, it is guaranteed that 𝑠c is
successfully decoded and eliminated with SIC. After SIC, we
derive a lower bound on the instantaneous SE of 𝑠𝑘 using
the similar process as in (21):

𝑅ins.
𝑘 ≥ E{e𝑘 |ψ̂𝑘 }

[
log2

(
1 + 𝑆𝑘 𝐼−1

𝑘

)]
(22)

≥ log2
©«1+

|ĥH
𝑘
f𝑘 |2{∑𝐾

𝑝=1, 𝑝≠𝑘 |ĥH
𝑘
f𝑝 |2+

∑𝐾
𝑝=1 fH

𝑝𝚽𝑘f𝑝 + 𝜎2

𝑃

}ª®®¬ (23)

≜ 𝑅lb
𝑘 .

Leveraging the derived SE expressions, we formulate the
sum SE maximization problem. As explained above, to
ensure the decodability of 𝑠c, the code rate of 𝑠c is set
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as min𝑘∈[𝐾 ]{𝑅lb
c (𝑘)}. With this, the sum SE maximization

problem is given by

𝒫1 : maximize
fc ,f1 , · · · ,f𝐾

min
𝑘∈[𝐾 ]

{𝑅lb
c (𝑘)} +

𝐾∑︁
𝑘=1

𝑅lb
𝑘 (24)

subject to ∥fc∥2 +
𝐾∑︁
𝑘=1
∥f𝑘 ∥2 ≤ 1. (25)

Unfortunately, it is infeasible to directly solve (24) due
non-smoothness and non-convexity entailed in the objective
function. In the next subsection, we present our approach
for reformulating (24) into a tractable form.

C. Problem Reformulation

To tackle our main problem of 𝒫1, we first transform the
objective function in (24) into a matrix form. To do this,
we first define an unified precoding vector by stacking all
precoders, fc, f1, · · · , f𝐾 as

f̄ = [fT
c , fT

1 , · · · , f
T
𝐾 ]T ∈ C𝑁 (𝐾+1)×1. (26)

With f̄, we express the SINR of 𝑠c as a form of Rayleigh
quotient, i.e. f̄HAc (𝑘)f̄/f̄HBc (𝑘)f̄, where

Ac (𝑘) = diag
( (𝐾+1) blocks︷                                    ︸︸                                    ︷
(ĥ𝑘 ĥH

𝑘 +𝚽𝑘), . . . , (ĥ𝑘 ĥH
𝑘 +𝚽𝑘)

)
+ I𝑁 (𝐾+1)

𝜎2

𝑃
, (27)

Bc (𝑘) = diag
(
𝚽𝑘 ,

𝐾 blocks︷                                    ︸︸                                    ︷
(ĥ𝑘 ĥH

𝑘 +𝚽𝑘), . . . , (ĥ𝑘 ĥH
𝑘 +𝚽𝑘)

)
+ I𝑁 (𝐾+1)

𝜎2

𝑃
. (28)

Similarly, the SINR of 𝑠𝑘 is written as f̄HA𝑘 f̄/f̄HB𝑘 f̄, where

A𝑘 = diag
(
0,

𝐾 blocks︷                                    ︸︸                                    ︷
(ĥ𝑘 ĥH

𝑘 +𝚽𝑘), . . . , (ĥ𝑘 ĥH
𝑘 +𝚽𝑘)

)
+ I𝑁 (𝐾+1)

𝜎2

𝑃
, (29)

B𝑘 = diag
(
0,

(𝑘−1) blocks︷                                    ︸︸                                    ︷
(ĥ𝑘 ĥH

𝑘 +𝚽𝑘), . . . , (ĥ𝑘 ĥH
𝑘 +𝚽𝑘),

(𝑘+1)-th block︷︸︸︷
𝚽𝑘 ,

(𝐾−𝑘 ) blocks︷                                    ︸︸                                    ︷
(ĥ𝑘 ĥH

𝑘 +𝚽𝑘), . . . , (ĥ𝑘 ĥH
𝑘 +𝚽𝑘)

)
+ I𝑁 (𝐾+1)

𝜎2

𝑃
. (30)

With this reformulation, we exploit the LogSumExp tech-
nique to resolve the non-smoothness involved in (24). We
approximate the non-smooth minimum function as

min
𝑖=1,...,𝑁

{𝑥𝑖} ≈ −𝛼 log

(
1
𝑁

𝑁∑︁
𝑖=1

exp
( 𝑥𝑖
−𝛼

))
(31)

≜ 𝑔({𝑥𝑖}𝑖∈[𝑁 ]), (32)

where 𝛼 determines the accuracy of the approximation. As
𝛼 → 0, the approximation becomes tight. Leveraging (31),
we approximate the SE of 𝑠c as

min
𝑘∈[𝐾 ]

{𝑅lb
c (𝑘)} ≈ 𝑔

({
f̄HAc (𝑘) f̄
f̄HBc (𝑘)f̄

}
𝑘∈[𝐾 ]

)
. (33)

Using this, we reformulate the original problem 𝒫1 defined
in (24) as

𝒫2 : maximize
f̄

𝑔

({
f̄HAc (𝑘) f̄
f̄HBc (𝑘) f̄

}
𝑘∈[𝐾 ]

)
+

𝐾∑︁
𝑘=1

log2

(
f̄HA𝑘 f̄
f̄HB𝑘 f̄

)
.

(34)

In 𝒫2, we drop the constraint (25) since the objective
function of 𝒫2 is scale invariant, which does not affect
optimality [24]. Even with this reformulation, however, it
is still infeasible to solve 𝒫2, since the ECM 𝚽𝑘 , 𝑘 ∈ [𝐾]
has not yet been determined. To address this, we estimate
the ECM 𝚽𝑘 , 𝑘 ∈ [𝐾] in the next section.

IV. ERROR COVARIANCE MATRIX ESTIMATION

To understand the difficulty of obtaining an ECM with-
out CSI feedback, we first summarize the conventional
approaches. For simplicity, we let 𝐿𝑘 = 1, 𝜅𝑘 = 0, and
𝜎2

path,𝑘 = 1 in the following explanation.
• Bayesian approach: In this approach, we calculate the

ECM by using known channel statistics. Assuming that
the statistics of AoD, denoted by 𝜃dl

𝑘
, is known at the

BS, then we obtain the channel covariance E[h𝑘hH
𝑘
] =

a
(
𝜃dl
𝑘

;𝜆dl
)
· aH

(
𝜃dl
𝑘

;𝜆dl
)
= R𝑘 . Assuming that linear

MMSE estimation [26] is used, the ECM is given as

�̂�𝑘 = R𝑘 − R𝑘
(
R𝑘 + 𝜌2

pilotI𝑁
)−1

R𝑘 , (35)

where 𝜌2
pilot represents the inverse of the effective SNR

of the pilot signals.
• Frequentist approach: In this case, instead of using

the channel statistics, we assume that the observed error
samples are given. Denoting the 𝑖-th DL channel error
sample as e𝑘 (𝑖) with 𝑖 ∈ [𝑇], the sample ECM is
obtained as

�̂�𝑘 =
1
𝑇

𝑇∑︁
𝑖=1

e𝑘 (𝑖)eH
𝑘 (𝑖) + 𝜌I, (36)

where 𝜌 is a regularization parameter to well-condition
�̂�𝑘 [33].

Unfortunately, neither approach is suitable in our case. First,
we assume that no channel statistics are known at the BS.
Further, it is difficult to analyze the ECM by using 2D-
NOMP due to its non-linearity. Additionally, the sample
ECM cannot be obtained in our scenario [17].

To address this challenge, we turn our attention to 2D-
NOMP’s near-CRLB MSE performance as shown in [32].
This result implies that the ECM can be tightly estimated by
leveraging the CRLB [5], whose trace gives a lower bound
on the MSE. Considering the relationship between the UL
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and DL channels and assuming reciprocal path gains in (4),
we derive the CRLB [5], [34] as

𝚽𝑘 ≽ JH
𝑘 ( 𝑓 )I

−1 (ψ𝑘)J𝑘 ( 𝑓 ) = C( 𝑓 ), (37)

where ψ𝑘 is the UL channel parameter vector defined as

ψ𝑘 = (�̄�T
𝑘,1, . . . , �̄�

T
𝑘,𝐿𝑘
)T ∈ R4𝐿𝑘×1, (38)

�̄�𝑘,ℓ = (𝜃ul
𝑘,ℓ , 𝜏

ul
𝑘,ℓ ,Re{𝛼ul

𝑘,ℓ }, Im{𝛼
ul
𝑘,ℓ })

T ∈ R4×1. (39)

Here, I(ψ𝑘) ∈ C4𝐿𝑘×4𝐿𝑘 indicates the FIM of user 𝑘 and
J𝑘 ( 𝑓 ) ∈ C4𝐿𝑘×𝑁 denotes the Jacobian matrix of user 𝑘 ,
evaluated at the frequency difference 𝑓 defined as

J𝑘 ( 𝑓 ) ≜
𝜕hT

𝑘
( 𝑓 )

𝜕ψ𝑘
, (40)

where h𝑘 ( 𝑓 ) is in (3).
An implication of (37) is that each diagonal element

follows [𝚽𝑘]𝑛,𝑛 ≥ [C( 𝑓 )]𝑛,𝑛,∀𝑛. Given that 2D-NOMP
exhibits the near-optimal MSE performance [32], the MSE
of 2D-NOMP can be closely approximated by the trace of
CRLB, i.e., E

[
∥h𝑘 ( 𝑓 ) − ĥ𝑘 ( 𝑓 )∥2

]
= tr{𝚽𝑘} ≈ tr{C( 𝑓 )}.

Building on this, we approximate the ECM as a diagonal
matrix by using the CRLB, i.e.,

𝚽𝑘 ≈ C( 𝑓 ) ◦ I𝑁 . (41)

To use (41) as the estimated ECM2, however, we note that
the Jacobian and FIM, i.e., J𝑘 ( 𝑓 ), I(ψ𝑘) should even be
evaluated using the true UL channel parameter ψ𝑘 . This is
typically not available in practice [27]. One maybe tempted
to use the estimated parameter ψ̂𝑘 to calculate (41), yet this
compromises the interpretation of the FIM. To address this,
we propose to use the O-FIM [28]. The relation of the O-
FIM to the FIM and derivation of the O-FIM are provided
in the following remark and lemma, respectively.

Remark 1 (O-FIM and FIM). By definition, the FIM is

I(ψ𝑘) = E
[
−𝜕

2 log 𝑓 (y|ψ𝑘)
𝜕ψ𝑘𝜕ψ

T
𝑘

]
, (42)

where the expectation is taken with respect to the observation
y conditioned on the true parameter ψ𝑘 . On the contrary,
the O-FIM is defined as an instantaneous observation of
the FIM. This observed information can be interpreted as
a sampled version of (42), given by

Ĩ(ψ̂𝑘) = −
𝜕2 log 𝑓 (y|ψ𝑘)
𝜕ψ𝑘𝜕ψ

T
𝑘

�����
ψ𝑘=ψ̂𝑘

, (43)

which can be computed straightforwardly with the estimated
parameters.

Lemma 1. Assuming that the likelihood of the observed
signal y follows Gaussian distribution, each element of the

2We note that our ECM estimation depends only on the diagonal
components since its purpose is based on the 2D NOMP algorithm’s
near-CRLB performance. However, in Section VI, we will show that this
approach is still very useful, as the DL channel reconstruction errors are
not negligible.

O-FIM in (43), calculated only using the UL estimated
parameter, ψ̂𝑘 , is

[Ĩ(ψ̂𝑘)]𝑢,𝑣 =
2
𝜎2 Re

{
𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

(
𝜕ȳ∗𝑛,𝑚
𝜕𝜓𝑢

𝜕ȳ𝑛,𝑚
𝜕𝜓𝑣

)
−

𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1
(y𝑛,𝑚 − ȳ𝑛,𝑚)∗

𝜕2ȳ𝑛,𝑚
𝜕𝜓𝑢𝜕𝜓𝑣

} �����
ψ𝑘=ψ̂𝑘

,

(44)

where ȳ is the reconstructed UL channel with the parameter
set ψ𝑘 defined as

ȳ ≜
𝐿𝑘∑︁
ℓ=1

𝛼ul
𝑘,ℓu(𝜏

ul
𝑘,ℓ , 𝜃

ul
𝑘,ℓ) ∈ C

𝑀𝑁×1. (45)

Proof. See Appendix A. □

In [27], [28], it was found that the inverse of the O-FIM
serves as a sampled version of the CRLB and is optimal
for estimating the realized squared error. That is to say, the
inverse of the O-FIM provides the best prediction of the
realized error based on the given received signal. Namely,
with the Jacobian transformation [5], we have

J̃H
𝑘 ( 𝑓 )Ĩ

−1 (ψ̂𝑘)J̃𝑘 ( 𝑓 )

= arg min
�̂�𝑘

E{e𝑘 |ψ̂𝑘 }

[
𝑁∑︁
𝑚=1

[
e𝑘eH

𝑘 − �̂�𝑘

]2

𝑚,𝑚

]
, (46)

where J̃( 𝑓 ) is the Jacobian matrix with ψ𝑘 at 𝑓 and O-
FIM Ĩ(ψ̂𝑘) is obtained from Lemma 1. Applying Jensen’s
inequality on the right-hand side of (46) and omitting the
notation {e𝑘 |ψ̂𝑘}, we obtain

𝑁∑︁
𝑚=1

[
E

[
e𝑘eH

𝑘

]
− �̂�𝑘

]2

𝑚,𝑚
≤ E

[
𝑁∑︁
𝑚=1

[
e𝑘eH

𝑘 − �̂�𝑘

]2

𝑚,𝑚

]
.

(47)

Note that our aim is to estimate the ECM, i.e., E[e𝑘eH
𝑘
],

using the matrix �̂�𝑘 . The sum of its diagonal squared errors
is represented on the left-hand side of (47). As shown in
(47), our solution derived from (46) in fact minimizes an
upper bound on the sum of the squared errors in the diagonal
elements for the ECM estimation. This supports the use of
the O-FIM to estimate diagonal elements of the ECM. We
summarize this in the following proposition.

Proposition 1. The estimated ECM represented in a diago-
nal form, which minimizes the upper bound of the MSE, can
be derived using the O-FIM as follows:

�̂�𝑘 =

(
J̃H
𝑘 ( 𝑓 )Ĩ

−1 (ψ̂𝑘)J̃𝑘 ( 𝑓 )
)
◦ I𝑁 ≜ C̃( 𝑓 ). (48)

We note that �̂�𝑘 in Proposition 1 can be calculated solely
by the estimated UL channel parameter ψ̂𝑘 , which is valu-
able in practical scenarios. However, it is worth mentioning
that �̂�𝑘 in Proposition 1 assumes a reciprocal path gain,
i.e., 𝜂𝑘,ℓ = 1,∀𝑘, ℓ [5]. It is necessary to further calibrate
the estimated ECM for a case where 0 ≤ 𝜂𝑘,ℓ ≤ 1,∀𝑘, ℓ. We
obtain this in the following corollary.



8

Corollary 1. For general 𝜂𝑘,ℓ , the estimated ECM can be
generalized to

�̂�𝑘 =

(
𝐿𝑘∑︁
ℓ=1

𝜂2
𝑘,ℓ

𝐿𝑘

)
C̃( 𝑓 ) +

(
𝐿𝑘∑︁
ℓ=1

1 − 𝜂2
𝑘,ℓ

𝐿𝑘

)
I𝑛, (49)

where C̃( 𝑓 ) is given by (48).

Proof. See Appendix B. □

Using �̂�𝑘 in (49), we eventually reach 𝒫3 as follows:

𝒫3 : maximize
f̄

𝑔

({
f̄HÂc (𝑘) f̄
f̄HB̂c (𝑘) f̄

}
𝑘∈[𝐾 ]

)
+

𝐾∑︁
𝑘=1

log2

(
f̄HÂ𝑘 f̄
f̄HB𝑘 f̄

)
,

(50)

where we define Âc (𝑘), B̂c (𝑘), Â𝑘 , and B̂𝑘 by replacing
every occurrence of 𝚽𝑘 in (27) through (30) with �̂�𝑘 . Note
that every element in (50) can be configured during UL
training. Now, we are ready to develop an algorithm to solve
(50).

V. PRECODER OPTIMIZATION

In this section, we propose a precoding optimization
method to solve problem (50). Taking inspiration from [24],
[35], the proposed method is centered on the following first-
order optimality condition.

Theorem 1. For problem (50), the first-order optimality
condition is satisfied when the following holds:

B−1
KKT (f̄)AKKT (f̄)f̄ = 𝜆(f̄) f̄, (51)

where each matrix is shown below.

AKKT (f̄) = 𝜆num (f̄) ×
[
𝐾∑︁
𝑘=1

Â𝑘
f̄HÂ𝑘 f̄

+
∑︁
𝑘∈[𝐾 ]

©«
exp

(
1
−𝛼

f̄HÂc (𝑘 ) f̄
f̄HB̂c (𝑘 ) f̄

)
∑
𝑗∈[𝐾 ] exp

(
1
−𝛼 log2

(
f̄HÂc ( 𝑗 ) f̄
f̄HB̂c ( 𝑗 ) f̄

)) Âc (𝑘)
f̄HÂc (𝑘) f̄

ª®®¬
]
,

(52)

BKKT (f̄) = 𝜆den (f̄) ×
[
𝐾∑︁
𝑘=1

B̂𝑘
f̄HB̂𝑘 f̄

+
∑︁
𝑘∈[𝐾 ]

©«
exp

(
1
−𝛼

f̄HÂc (𝑘 ) f̄
f̄HB̂c, (𝑘 ) f̄

)
∑
𝑗∈[𝐾 ] exp

(
1
−𝛼 log2

(
f̄HÂc ( 𝑗 ) f̄
f̄HB̂c ( 𝑗 ) f̄

)) B̂c (𝑘)
f̄HB̂c (𝑘) f̄

ª®®¬
]
,

(53)

𝜆(f̄) =
𝐾∏
𝑘=1

(
f̄HÂ𝑘 f̄
f̄HB̂𝑘 f̄

)
×


1
𝐾

∑︁
𝑘∈[𝐾 ]

exp
(
log2

(
f̄HÂc (𝑘)f̄
f̄HB̂c (𝑘)f̄

))− 1
𝛼

− 𝛼

log2 𝑒

=
𝜆num (f̄)
𝜆den (f̄)

. (54)

Proof. See Appendix C. □

We observe that (51) is interpreted as a form of non-
linear eigenvector-dependent eigenvalue problem. The ma-
trix B−1

KKT (f̄ )AKKT (f̄ ) is a nonlinear matrix function of f̄,
and its eigenvalue 𝜆(f̄) is set as the objective function of our
main problem (50). Crucially, if we find the leading eigen-
vector, denoted as f̄★, it naturally maximizes our objective
function of (50) while satisfying the condition (51).

To obtain f̄★, we propose a GPI-based algorithm. To be
specific, denoting that f̄(𝑡 ) as a precoding vector obtained in
𝑡-th iteration, we iteratively update the precoding vector by

f̄(𝑡 ) ←
B−1

KKT (f̄(𝑡−1) )AKKT (f̄(𝑡−1) ) f̄(𝑡−1)

∥B−1
KKT (f̄(𝑡−1) )AKKT (f̄(𝑡−1) ) f̄(𝑡−1) ∥

, (55)

where AKKT (f̄(𝑡−1) ), BKKT (f̄(𝑡−1) ) are calculated as (52) and
(53). Note that this process is repeated until the update
of precoder is bounded by predefined parameter, which isf̄(𝑡 ) − f̄(𝑡−1)

 < 𝜖 .

Remark 2. (Rationales for RSMA and extension to NOMA)
While we mainly consider RSMA, non-orthogonal multiple
access (NOMA) is another multiple access technique robust
with MUI. Nonetheless, in MIMO-NOMA, it is difficult
to find the optimal SIC order because each user’s SE is
determined not only by its channel strength, but also by a
complicated function of channel direction, transmit power,
and precoding vectors [22]. For this reason, as shown in
[36], MIMO-NOMA achieves mediocre SE, even lower than
that of conventional SDMA. In contrast, RSMA achieves
high SE, particularly in imperfect CSIT scenarios. This is
thanks to its unique message construction, by which SIC
ordering is simplified [22]. This is a primary reason that we
choose RSMA instead of NOMA to mitigate MUI. However,
we note that our approach also can be extended to MIMO-
NOMA, which presents interesting future work.

VI. SIMULATION RESULTS

In this section, we numerically examine the actual MSE
of 2D-NOMP in DL channel reconstruction, compare it
with the expected MSE from our ECM estimation. We
also present the ergodic sum SE performance comparison
between the proposed method and other baseline methods
in various environments.

A. MSE of DL Channel Reconstruction

We first define the MSE of estimated DL channel of user
𝑘 , i.e. ĥ𝑘 ( 𝑓 ) as

MSE = E
[
∥h𝑘 ( 𝑓 ) − ĥ𝑘 ( 𝑓 )∥2

]
. (56)

Based on this, we plot the actual MSE (56) of the 2D-NOMP
algorithm as a function of the frequency difference 𝑓 in
Fig. 1. We then compare the analytical MSE obtained by
the CRLB and by our ECM estimation in (48). To yield
the MSE from the CRLB and estimated ECM, we compute
tr{C( 𝑓 )} and tr{�̂�𝑘} by following [5].
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Fig. 1: MSE over DL carrier frequency. The UL carrier
frequency is 7.15 GHz and UL SNR is 10 dB with 𝑀 = 128.

In Fig. 1, we first observe that the actual MSE of 2D-
NOMP is close to the level of CRLB, i.e., tr{C( 𝑓 )}. This
indicates that 2D-NOMP achieves near-optimal MSE per-
formance in DL channel reconstruction, which is consistent
with findings in [32]. Notably, we find that the expected
MSE from our proposed ECM estimation tr{�̂�𝑘} is closer to
the actual MSE of the 2D NOMP estimator than the original
CRLB case. This result justifies the use of O-FIM for ECM
estimation, not only because of its practical applicability but
also its accuracy.

B. Ergodic Sum SE

We now investigate the ergodic sum SE of the proposed
method through numerical simulations. For the simulation
environments, we follow the system model laid forth in
Section II. As baseline methods, we consider the following.
We assume that the reconstructed DL channel (17) is used
for each baseline precoding method.
• FP-HFPI: As a state-of-the-art RSMA precoding

method, we consider the FP-HFPI method, wherein the
precoder optimization is performed based on FP [26].
For a comprehensive comparison, we incorporate our
ECM estimation �̂�𝑘 into the FP-HFPI method.

• WMMSE: As a state-of-the-art SDMA precoding op-
timization method, we consider WMMSE [37].

• no RS: We consider the precoding method that maxi-
mizes the sum SE by adopting classical SDMA [35].

• MRT: The precoders are aligned by the estimated
channel vector, i.e. f𝑘 = ĥ𝑘 , 𝑘 ∈ K.

• RZF: The precoders are designed in a regularized zero-
forcing (RZF) fashion as

f𝑘 =
(
ĤĤH + 𝜎

2

𝑃
I
)−1

ĥH
𝑘 , (57)

where Ĥ denotes the matrix formed by stacking all the
users’ estimated channels [38].
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(a) Reciprocal channel gain (𝜂2
𝑘,ℓ

= 1,∀𝑘, ℓ).
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(b) Non-reciprocal channel gain (𝜂2
𝑘,ℓ
∼ Unif (𝜇, 1),∀𝑘, ℓ).

Fig. 2: Comparison of the ergodic sum SE over transmit
SNR, i.e., 𝑃/𝜎2 with (𝑁, 𝐾) = (32, 16) and 𝑀 = 128. The
UL carrier frequency is 7.25 GHz, and DL carrier frequency
is 7.75 GHz. We use 𝜖 = 0.1, 𝛼 = 0.1 and 𝜇 = 0.9. For the
cases without �̂�, we assume �̂� = 0.

In Fig. 2, we show the ergodic sum SE for the proposed
method and the baseline methods, assuming 𝜂2

𝑘,ℓ
= 1,∀𝑘, ℓ

for Fig. 2-(a) and 𝜂2
𝑘,ℓ
∼ Unif (𝜇, 1),∀𝑘, ℓ for Fig. 2-(b).

First, we observe that the RSMA approaches offer significant
SE gains over SDMA approaches, especially in mid-to-high
SNR regimes. For instance, with reciprocal channel gain,
the proposed method improves SE by up to 15.8% over the
SDMA method in [35]. In the non-reciprocal channel gain
case, which causes inaccurate CSIT and typically reduces SE
performance, the performance gap between our method and
[35] increases up to 22.7% at SNR of 40 dB, demonstrating
the effective MUI mitigation capability of RSMA.

Compared to FP-HFPI, our method achieves better sum
SE performance at low and high SNR regimes. Especially,
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TABLE I: Relative performance compared with perfect CSIT

(a) (𝑁, 𝐾 ) = (64, 32)

Number of paths 1 4 7 10

Proposed (%) 96.01 93.00 89.00 83.63

no RS (%) 95.12 85.50 76.12 68.84

(b) (𝑁, 𝐾 ) = (16, 8)

Number of paths 1 4 7 10

Proposed (%) 86.95 79.63 76.01 73.73

no RS (%) 86.51 65.36 58.34 50.98

Percentage of the sum SE performance compared to WMMSE under the
assumption of perfect CSIT [37], for different numbers of channel paths at
an SNR of 20 dB.

at SNR of 40 dB in Fig. 2-(b), the proposed method
attains around 9% improvement in sum SE over FP-HFPI.
We interpret these gains as stemming from the proposed
method’s ability to capture the impacts of the ECM. That
is to say, our method exploits the SINR expression in
its original form, while FP-HFPI alters it via a quadratic
transform [26]. This may allow the proposed method to more
suitably reflect the impacts of the ECM into the precoder
design. It is crucial to note that, this level of SE performance
for FP-HFPI is only achievable when our ECM estimation
is properly incorporated. If FP-HFPI does not rely on our
ECM estimation, Fig. 2-(b) shows that the performance gap
between the proposed method and FP-HFPI increases to
23.2% at SNR of 40dB. At other SNR levels in Fig. 2-(a),
(b), FP-HFPI suffers from significant SE degradation when
the ECM estimation is not used.

These observations indicate that the ECM is crucial for
achieving robust SE. For example, in Fig. 2-(b), incorporat-
ing the ECM into the proposed precoder design results in
21.1% improvement in terms of sum SE at the SNR of 40
dB. This highlights the need for careful handling of CSIT
errors to fully realize RSMA’s potential.

C. Robustness in Various Channel Environments

We explore the robustness of the proposed method in
various settings. In Table I, we compare the sum SE achieved
by our approach versus WMMSE with perfect CSIT [37].
Since our approach does not rely on any CSI feedback,
Table I implies the inevitable performance loss resulting
from its absence. In general, the performance gap decreases
as (𝑁, 𝐾) increases and the number of paths decreases.
This is reasonable because, as 𝑁 increases, it enables the
accurate parameter estimation during UL training, which is
effective in mitigating MUI. Similarly, as the number of
channel paths decreases, the channels from different users
can become nearly orthogonal, which reduces the MUI and
thereby increases the sum SE. Given that the number of
dominant DL paths is typically small (∼4) as demonstrated
in [31], and also perfect CSIT is not feasible even by using
CSI feedback, the actual performance gap in practice would
be much less than 7% for (𝑁, 𝐾) = (64, 32).
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Fig. 3: Comparison of the ergodic sum SE over reduced DL
path number with SNR = 30 dB. It is assumed that the UL
channel consists of 5 paths and other simulation settings are
identical to those of Fig. 2-(b).

Through the comparison, we provide a trade-off guideline
between the latency reduction from saving CSI feedback
and the corresponding loss of sum SE. In conventional DL
transmission within FDD systems, the users estimate the
DL channel using reference signals (e.g., CSI-RS) and send
feedback (e.g., PMI, RI, SINR) to the BS. In this process,
the primary latency arises from CSI report computation on
the user side, which can take up to 6 ms due to limited
computational resources ([39], Table 5.4-2). This is much
longer than other steps, such as CSI-RS scheduling (∼1 ms),
CSI feedback (∼1 ms), and decoding (∼1 ms). Using our
approach, we shift this CSI processing overhead from the
user side to the BS (see Fig. 4). This can save approximately
6-7 ms, while achieving more than 93% of the sum SE
in (𝑁, 𝐾) = (64, 32) assuming 4 dominant paths [31]. As
mentioned before, since perfect CSIT cannot be guaranteed
even with conventional CSI feedback [14], the de facto
performance loss of the proposed approach in sum SE is well
below 7%. As a result, our approach offers a low-latency
MIMO transmission framework that significantly reduces
latency with only a slight impact on sum SE. We illustrate
the comparison of CSI acquisition processes in Fig. 4.

Fig. 3 shows the sum SE performance when the number
of DL channel path reduces, which occurs due to a higher
carrier frequency of the DL band in FDD [3]. This discrep-
ancy between actual channel path numbers between UL and
DL naturally leads to performance degradation, as it would
result in inaccurate channel reconstruction. For all the cases
of reduced DL path, the proposed method provides robust
SE performance compared to other SDMA methods. Similar
to the above observation, this robustness of our method is
attributed to the proper ECM estimation.

VII. CONCLUSION

In this paper, we have proposed a novel method to achieve
robust SE performance in FDD massive MIMO systems
without the need for CSI feedback. In order to effectively
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Fig. 4: Comparison of conventional FDD MU-MIMO DL CSI acquisition process vs. the proposed CSI acquisition process.

manage MUI caused by imperfect DL channel reconstruc-
tion, our method uses RSMA. This approach requires care-
fully integrating the CSIT error into the precoder design,
with the proposed ECM estimation being crucial. Our major
findings are as follows. i) The proposed ECM estimation us-
ing the O-FIM accurately captures DL CSIT reconstruction
errors. ii) The proposed method significantly improves the
sum SE performance over the existing methods. In particular,
accurate ECM estimation is crucial for obtaining these
gains. iii) Our approach offers a low-latency FDD massive
MIMO transmission framework, achieving a favorable trade-
off between significant latency reduction and a slight loss
in sum SE. As future work, it is promising to extend our
approach by considering various system environments, such
as energy efficiency maximization, max-min fairness, and
integrated sensing and communications.

APPENDIX A
PROOF OF LEMMA 1

Let us assume each measurement y𝑛,𝑚 at each antenna and
sub-carrier (𝑛 ∈ [𝑁], 𝑚 ∈ [𝑀]) is drawn under independent
and identically distributed with likelihood 𝑓 (y𝑛,𝑚 |ψ𝑘), and
its distribution follows Gaussian distribution with covariance
𝜎2I and mean ȳ. Then, the log-likelihood of the parameters
ψ𝑘 given measured signal can be represented by

L(ψ𝑘 |y𝑛,𝑚, 𝑛 ∈ [𝑁], 𝑚 ∈ [𝑀]) ≜
𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

log 𝑓 (y𝑛,𝑚 |ψ𝑘)

(58)

= − 1
𝜎2 (y − ȳ)H (y − ȳ) + 𝐶,

(59)

where 𝐶 is a constant. Then, the observed information
defined as the negative Hessian of log-likelihood is evaluated
at channel parameters ψ̂𝑘 , as follows [28]:

I(ψ̂𝑘) = −∇∇HL(ψ𝑘) |ψ𝑘=ψ̂𝑘 (60)

= −



𝜕2

𝜕2𝜓1,1

𝜕2

𝜕𝜓1,1𝜕𝜓1,2
· · · 𝜕2

𝜕𝜓1,1𝜕𝜓𝐿,4
𝜕2

𝜕𝜓1,2𝜕𝜓1,1
𝜕2

𝜕𝜓2
1,2

· · · 𝜕2

𝜕𝜓1,2𝜕𝜓𝐿,4

...
...

. . .
...

𝜕2

𝜕𝜓𝐿,4𝜕𝜓1,1
𝜕2

𝜕𝜓𝐿,4𝜕𝜓1,2
· · · 𝜕2

𝜕2𝜓𝐿,4


L(ψ𝑘)

�����������
ψk=ψ̂𝑘

,

(61)

where L(ψ𝑘) denotes L(ψ𝑘 |y𝑛,𝑚, 𝑛 ∈ [𝑁], 𝑚 ∈ [𝑀]) for
simplicity and L(ψ𝑘) |ψk=ψ̂𝑘

follows the normal distribution
as well. To evaluate (𝑢, 𝑣) component of I(ψ̂𝑘), we compute

𝜕L(ψ𝑘)
𝜕𝜓𝑣

=
1
𝜎2

𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

(
𝜕ȳ𝑛,𝑚
𝜕𝜓𝑣

)∗
(y𝑛,𝑚 − ȳ𝑛,𝑚)

+ 1
𝜎2

𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1
(y𝑛,𝑚 − ȳ𝑛,𝑚)∗

(
𝜕ȳ𝑛,𝑚
𝜕𝜓𝑣

)
,

=
2
𝜎2 Re

{
𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1
(y𝑛,𝑚 − ȳ𝑛,𝑚)∗

(
𝜕ȳ𝑛,𝑚
𝜕𝜓𝑣

)}
,

where ȳ𝑛,𝑚 denotes the reconstructed signal at 𝑛-th antenna
and 𝑠-th sub-carrier. Then, the derivative with respect to 𝜓𝑢
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can be found as follows

𝜕

𝜕𝜓𝑢

(
𝜕L(ψ𝑘)
𝜕𝜓𝑣

)
=

2
𝜎2 Re

{
𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

(
−
𝜕ȳ∗𝑛,𝑚
𝜕𝜓𝑢

𝜕ȳ𝑛,𝑚
𝜕𝜓𝑣

)
(62)

+
𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1
(y𝑛,𝑚 − ȳ𝑛,𝑚)∗

𝜕2ȳ𝑛,𝑚
𝜕𝜓𝑢𝜕𝜓𝑣

}
.

(63)

Substituting (62) into (61) completes the proof.

APPENDIX B
PROOF OF COROLLARY 1

Consider first the basic case of 𝛼dl
𝑘,ℓ

= 𝛼ul
𝑘,ℓ
,∀𝑘, ℓ, then we

would represent the ECM of reconstructed channel in (3) as

𝚽𝑘 ≜ E{e𝑘 |ψ̂𝑘 }

[ (
𝐿𝑘∑︁
ℓ=1

𝛼dl
𝑘,ℓ ū𝑘,ℓ −

𝐿𝑘∑︁
ℓ=1

�̂�dl
𝑘,ℓ

ˆ̄u𝑘,ℓ

)
×

(
𝐿𝑘∑︁
ℓ=1

𝛼dl
𝑘,ℓ ū𝑘,ℓ −

𝐿𝑘∑︁
ℓ=1

�̂�dl
𝑘,ℓ û𝑘,ℓ

)H ]
, (64)

where we define ū𝑘,ℓ as

ū𝑘,ℓ = a
(
𝜃dl
𝑘,ℓ ;𝜆

dl
)
𝑒− 𝑗2𝜋 𝑓 𝜏𝑘,ℓ ∈ C𝑁×1, (65)

which represents the sampled signature of u𝑘,ℓ from (7) at
frequency 𝑓 , and let ˆ̄u denote its estimate. Recall that this
can be obtainable via (48). Based on this, it can be extended
to the general case: 𝛼dl

𝑘,ℓ
= 𝜂𝑘,ℓ𝛼

ul
𝑘,ℓ
+

√︃
1 − 𝜂2

𝑘,ℓ
𝛽𝑘,ℓ , where

𝛽𝑘,ℓ ∼ CN(0, 𝜎2
path,𝑘) and independent of 𝛼ul

𝑘,ℓ
, �̂�ul
𝑘,ℓ

. Then,
we possibly develop the new ECM as follows:

E

[ (
𝐿𝑘∑︁
ℓ=1
(𝜂𝑘,ℓ𝛼ul

𝑘,ℓ +
√︃

1 − 𝜂2
𝑘,ℓ
𝛽𝑘,ℓ)ū𝑘,ℓ −

𝐿𝑘∑︁
ℓ=1

𝜂𝑘,ℓ �̂�
ul
𝑘,ℓ

ˆ̄u𝑘,ℓ

)
×

(
𝐿𝑘∑︁
ℓ=1
(𝜂𝑘,ℓ𝛼ul

𝑘,ℓ +
√︃

1 − 𝜂2
𝑘,ℓ
𝛽𝑘,ℓ)ū𝑘,ℓ −

𝐿𝑘∑︁
ℓ=1

𝜂𝑘,ℓ �̂�
ul
𝑘,ℓ

ˆ̄u𝑘,ℓ

)H ]
,

(66)

where we assumed that �̂�dl = 𝜂𝑘,ℓ �̂�
ul
𝑘,ℓ

using the correlation
knowledge. To gain further insight, we can consider the
following assumptions by examining (66), i.e.,

E

[(
𝛼ul
𝑘,ℓ ū𝑘,ℓ − �̂�

ul
𝑘,ℓ

ˆ̄u𝑘,ℓ
) (
𝛼ul
𝑘′ ,ℓ′ ū𝑘′ ,ℓ′ − �̂�

ul
𝑘′ ,ℓ′

ˆ̄u𝑘′ ,ℓ′
)H

]
≈ 0,

∀𝑘 ≠ 𝑘 ′ or ℓ ≠ ℓ′, (67)

which implies no error correlation between different user
or path. In addition, by leveraging the relationship between
𝛽𝑘,ℓ and 𝛼𝑘,ℓ , �̂�𝑘,ℓ , (66) can be developed by

E

[
𝐿𝑘∑︁
ℓ=1

𝜂2
𝑘,ℓ (𝛼

ul
𝑘,ℓ ū𝑘,ℓ − �̂�

ul
𝑘,ℓ

ˆ̄u𝑘,ℓ) (𝛼ul
𝑘,ℓ ū𝑘,ℓ − �̂�

ul
𝑘,ℓ

ˆ̄u𝑘,ℓ)H

+
𝐿𝑘∑︁
ℓ=1
(1 − 𝜂2

𝑘,ℓ)𝛽𝑘,ℓ 𝛽
H
𝑘,ℓ ū𝑘,ℓ ū

H
𝑘,ℓ

]
=

(
𝐿𝑘∑︁
ℓ=1

𝜂2
𝑘,ℓ

𝐿𝑘

)
𝚽𝑘 +

(
𝐿𝑘∑︁
ℓ=1

1 − 𝜂2
𝑘,ℓ

𝐿𝑘

)
I𝑛,

(68)

where 𝜎2
path,𝑘 =

1
𝑁𝐿𝑘

by normalization. Since the underlying
ECM given channel model follows (68), we replace 𝚽𝑘 with
C̃( 𝑓 ) to estimate the ECM. This completes the proof.

APPENDIX C
PROOF OF THEOREM 1

We first explore the KKT condition of our main problem
(50). In this, we develop the Lagrangian function as

𝐿 (f̄) = log ©« 1
𝐾

∑︁
𝑘∈[𝐾 ]

exp
(
log2

(
f̄HAc (𝑘) f̄
f̄HBc (𝑘) f̄

))− 1
𝛼 ª®¬
−𝛼

+
𝐾∑︁
𝑘=1

log2

(
f̄HA𝑘 f̄
f̄HB𝑘 f̄

)
. (69)

Then, we take the partial derivatives of 𝐿 (f̄) in terms of
f̄ to find a stationary point, where we set it as zero. For
notational simplicity, we denote the first term of (69) as
𝐿1 (f̄) and second term as 𝐿2 (f̄) respectively, and each partial
derivative is obtained respectively, as follows

𝜕𝐿1 (f̄)
𝜕 f̄H

=
∑︁
𝑘∈[𝐾 ]

©«
exp

(
1
−𝛼

f̄HAc (𝑘 ) f̄
f̄HBc (𝑘 ) f̄

)
∑
𝑗∈[𝐾 ] exp

(
1
−𝛼 log2

(
f̄HAc ( 𝑗 ) f̄
f̄HBc ( 𝑗 ) f̄

)) ª®®®®®®¬
× 𝜕

(
log2

(
f̄HAc (𝑘)f̄
f̄HBc (𝑘)f̄

))
/𝜕fH (70)

=
1

log 2

𝐺∑︁
𝑖=1


∑︁
𝑘∈[𝐾 ]

©«
exp

(
1
−𝛼

f̄HAc (𝑘 ) f̄
f̄HBc (𝑘 ) f̄

)
∑
𝑗∈[𝐾 ] exp

(
1
−𝛼 log2

(
f̄HAc ( 𝑗 ) f̄
f̄HBc ( 𝑗 ) f̄

)) ª®®®®®®¬


×

{
Ac (𝑘) f̄

f̄HAc (𝑘) f̄
− Bc (𝑘) f̄

f̄HBc (𝑘) f̄

} ]
, (71)

𝜕𝐿2 (f̄)
𝜕 f̄H

=
1

log 2

𝐾∑︁
𝑘=1

[
A𝑘 f̄

f̄HA𝑘 f̄
− B𝑘 f̄

f̄HB𝑘 f̄

]
. (72)

It is obvious that when the sum of both terms is zero,
stationarity for first-order KKT condition is met, which is

𝜕𝐿1 (f̄)
𝜕 f̄H

+ 𝜕𝐿2 (f̄)
𝜕 f̄H

= 0 (73)

⇔
∑︁
𝑘∈[𝐾 ]

©«
exp

(
1
−𝛼

f̄HAc (𝑘 ) f̄
f̄HBc (𝑘 ) f̄

)
∑
𝑗∈[𝐾 ] exp

(
1
−𝛼 log2

(
f̄HAc ( 𝑗 ) f̄
f̄HBc ( 𝑗 ) f̄

)) ª®®®®®®¬
(74)

×
{

Ac (𝑘) f̄
f̄HAc (𝑘) f̄

− Bc (𝑘) f̄
f̄HBc (𝑘) f̄

} ]
(75)

+
𝐾∑︁
𝑘=1

[
A𝑘 f̄

f̄HA𝑘 f̄
− B𝑘 f̄

f̄HB𝑘 f̄

]
= 0. (76)
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With equation (52), (53), (54), we can arrange the first-order
KKT condition as

AKKT (f̄)f̄ =𝜆(f̄)BKKT (f̄) f̄ ⇔ BKKT (f̄)−1AKKT (f̄) f̄ (77)

=𝜆(f̄) f̄. (78)

This completes the proof.
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