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Abstract—This paper leverages stochastic geometry to model,
analyze, and optimize multi-band unmanned aerial vehicle (UAV)
communication networks operating across low-frequency and
millimeter-wave (mmWave) bands. We introduce a novel ap-
proach to modeling mmWave antenna gain in such networks,
which allows us to better capture and account for interference in
our analysis and optimization. We then propose a simple yet effec-
tive user-UAV association policy, which strategically biases users
towards mmWave UAVs to take advantage of lower interference
and wider bandwidths compared to low-frequency UAVs. Under
this scheme, we analytically derive the corresponding association
probability, coverage probability, and spectral efficiency. We
conclude by assessing our proposed association policy through
simulation and analysis, demonstrating its effectiveness based
on coverage probability and per-user data rates, as well as the
alignment between analytical and simulation results.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are widely used in var-
ious fields including aerial photography, disaster relief, and
wireless communications [1], thanks to their affordability
and mobility. In wireless communications, UAV base stations
(BSs) can provide temporary connectivity, expand coverage,
and improve network reliability and efficiency by supple-
menting or replacing traditional ground BSs [2]. Meanwhile,
multi-band networks, like 5G, leverage both low- and high-
frequency spectrum to balance coverage and capacity needs
[3]. This attractive paradigm motivates the potential of multi-
band UAV-based networks, but their analysis and optimization
remain open problems, marking the focus of this work.

As with all networks, successful design and deployment of
UAV networks relies on thorough performance analyses. In
this context, stochastic geometry provides a tractable math-
ematical framework for modeling the randomness of real-
world network deployments and has been employed widely in
analyzing traditional cellular networks [4], but its use has been
limited in UAV networks. For instance, in analyzing a single-
band UAV network, the authors of [5] used a Poisson point
process (PPP) to model the location of UAVs and then derived
the downlink coverage probability. The authors in [6] used
a binomial point process to study mmWave UAV networks,
using a 3D blockage model and a 3D sectorized antenna model
to capture air-to-ground propagation at mmWave frequencies.
The work of [7] studied mobile UAVs serving ground users
modeled by a Poisson cluster process and derived the success
probability under hybrid automatic repeat request.

Like traditional ground BSs, UAVs operating at mmWave
frequencies rely on antenna arrays and beamforming to over-

come high-frequency propagation loss. However, accurately
modeling beamforming gain within a stochastic geometry
framework remains a significant challenge. Previous work has
used simplified antenna gain models, such as flat-top, sinc, and
cosine patterns [8], [9], or assumed uniform beam steering dis-
tributions [6]. While tractable, these approaches compromise
accuracy, motivating the need for more precise antenna gain
modeling, especially in networks with interference.

Strictly speaking, cell association and coverage optimiza-
tion in dense multi-band networks is a challenging task
that involves balancing signal strength, interference, and BS
load across multiple frequency bands. A simple yet effective
approach to this problem is so-called cell range expansion
(CRE), which improves coverage and performance by tuning
only a few key system parameters. For example, an adaptive
CRE scheme was introduced in [10] for heterogeneous net-
works, using transmit power control to enhance capacity and
throughput. In other work [11], the authors used bias factors
to manage offloading between macro and small cells through
environment-specific optimization in two-tier heterogeneous
networks. Similarly, the authors in [12] presented a rate-based
user association rule with a bias factor to improve long-
term data rates, but relied on hand-tuning the bias factor,
limiting its adaptability. It remains unclear how to create CRE
schemes which are effective yet simple, deployment-friendly,
and based purely on network statistics/parameters, not real-
time conditions.

In this paper, we introduce a stochastic geometry-based
analytical framework for multi-band UAV networks and derive
the corresponding association probability, coverage probabil-
ity, and spectral efficiency. Core to our approach is a novel
approximation of mmWave UAV antenna gain, which im-
proves interference modeling compared to existing approaches
[6]. Based on this, we introduce an adaptive CRE scheme
that leverages network statistics rather than real-time factors,
enhancing its practicality. Extensive simulations confirm the
accuracy of our analytical results and demonstrate that the pro-
posed CRE scheme significantly improves network coverage
and per-user data rates.

II. SYSTEM MODEL

Illustrated in Fig. 1, this work considers a multi-band UAV
network serving downlink to ground users. The network in-
cludes two types of UAV BSs: one operating at a relatively low
frequency (e.g., 1 GHz) and the other at a mmWave frequency



mmWave UAV A
low-frequency 

UAV C

mmWave UAV B

serving distance

interfering 

distance

User A
User B

User C

Fig. 1. UAVs at height h, users on the ground. Users associate with either
low-frequency or mmWave UAVs, with interference from non-serving UAVs.
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Number of antennas N

Half-power beamwidth ∆θ = ∆ϕ

√
3/N

Main-lobe gain GM N

Side-lobe gain GS

√
N−

√
3

2π
Nsin

( √
3

2
√

N

)
√
N−

√
3

2π
sin

( √
3

2
√

N

)

(e.g., 30 GHz). We assume all UAVs hover at a height of h
meters, with the planar coordinates of the i-th UAV denoted
by xi. Let Φlf and Φm denote the sets of low-frequency
and mmWave UAVs, respectively. The coordinates of the low-
frequency UAVs in Φlf follow a homogeneous PPP [13] with
density λlf . Analogously, Φm follows a homogeneous PPP
with density λm. Ground users are modeled by a PPP with
density λ ≫ λm + λlf , ensuring each UAV has at least one
associated user with high probability. Within either frequency
band, each user associates with the UAV providing the highest
average received signal strength.

We assume each low-frequency UAV employs a single
omnidirectional antenna with unit gain in all directions. In
contrast, each mmWave UAV is equipped with an antenna
array and employs beamforming to overcome mmWave path
loss. Specifically, we consider a square uniform planar array
(UPA) of N antennas with half-wavelength antenna spacing.
Adopting the sectorized UPA gain model in [14], we model
the antenna gain pattern through four parameters: azimuth
and elevation half-power beamwidths (∆θ,∆ϕ) and the gains
of the main and side lobes GM, GS. We assume that each
mmWave UAV electronically steers the center of its main lobe
directly toward its serving user to deliver maximal gain GM.
All antenna arrays are down-tilted toward the ground, with
azimuth θ ∈ [0, 2π) and elevation ϕ ∈ [0, π

2 ) defined as in
Fig. 1; note that ϕ = 0 corresponds to directly toward the
ground and ϕ = π

2 corresponds to toward the horizon. Ground
users have a single omnidirectional antenna with unit gain.

We assume both low-frequency and mmWave signals un-
dergo free-space path loss and small-scale fading. The inverse
path loss at frequency fc over a distance d is modeled by
Kd−α, where K = ( c

4πfc
)2 and α are specific to each

band. Note that only signals in the same frequency band
cause interference to one another. Thus, the received signal-to-
interference-plus-noise ratio (SINR) at a target user in either
band becomes

SINRlf =
PlfglfKlfr

−αlf

σ2
lf + Ilf

, (1)

SINRm =
PmGMgmKmr

−αm

σ2
m + Im

, (2)

where Plf and Pm denote the corresponding UAV trans-
mit powers, σ2

lf and σ2
m are the ground user noise pow-

ers, and Ilf =
∑

xi∈Φlf\{x0} PlfglfKlfd
−αlf
i and Im =∑

xi∈Φm\{x0} PmGxi
gmKmd

−αm
i are the aggregate interfer-

ence terms, where di denotes the distance between the i-
th UAV and the target user. We assume Rayleigh fading
for the low-frequency band and Nakagami-m fading for the
mmWave band [6]. Correspondingly, glf ∼ Exponential(1)
and gm ∼ Gamma(m, 1/m).

III. NETWORK PERFORMANCE ANALYSIS

With our network model laid forth, we now derive expres-
sions to analyze and subsequently optimize network perfor-
mance via a novel association policy. We begin by deriving
the distance distribution between a UAV and its serving user.

A. Serving Distance Distribution

The serving distance between the typical user at the origin
and the nearest UAV in each band, denoted by Rt where t ∈
{lf,m}, follows a probability density function (PDF) given by

fRt(r) = 2πλtr exp(−πλt(r
2 − h2)), r ≥ h. (3)

This can be derived by considering UAV locations as a
homogeneous PPP with density λt and applying the nearest-
neighbor distance distribution by PPPs [4].

B. Antenna Gain of Interfering UAVs

The severity of interference inflicted onto a ground user by
interfering (non-serving) UAVs plays a decisive role in overall
network performance, and characterizing such demands accu-
rate modeling of the antenna gain of mmWave UAVs. To this
end, we derive an expression for the antenna gain of interfering
UAVs by leveraging the serving distance distribution in (3).

As illustrated in Fig. 1, consider mmWave UAVs A and
B serving their respective users A and B at the same time
and frequency. UAV A inflicts interference onto user B when
serving its associated user A. This interference depends on the
antenna gain of UAV A toward user B when steering its beam
toward user A. Let (θ, ϕ) be the azimuth and elevation and
r be the distance from UAV A to its associated user A. Let
(θ0, ϕ0) be the azimuth and elevation and d be the distance
from UAV A to the interfered user B. Users are associated with
UAVs based on average received signal strength, meaning that
user B must be closer to UAV B than to UAV A, under our
assumed model.



Denoting the location of UAV A by x, its antenna gain
toward user B can be expressed as

Gx =

{
GM w.p. pM = pθ · pϕ
GS w.p. pS = 1− pθ · pϕ

, (4)

where pθ and pϕ are the probabilities that user B falls within
the azimuth and elevation beamwidths, respectively, of UAV
A’s beam steered toward user A. The azimuth angles θ and
θ0 are uniformly distributed across [0, 2π), since UAVs and
users follow independent homogeneous PPPs. Consequently,
the probability that the azimuth θ0 from UAV A to user B is
within the main lobe of the beam steered by UAV A toward
(θ, ϕ) is pθ = ∆θ

2π . Arriving at pϕ proves to be a little more
involved, which we tackle as follows.

Assuming that ∆ϕ is reasonably small and the mmWave
UAV density λm is not extremely high, it is with high
probability that ϕ0 − ∆ϕ

2 ≥ 0 and ϕ0 +
∆ϕ

2 ≤ π
2 , which we

assume henceforth. Conditioning on d, the distance between
UAV A and user B, the probability that ϕ0 falls in the main
lobe of the beam steered by UAV A toward (θ, ϕ) is
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(b)
≈ ∆ϕ · fRm(d) · d

√
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(c)
= 2πλm∆ϕ exp(−πλm(d2 − h2)) · d

2
√
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h
, (11)

where (a) follows from the mean value theorem for some ϕc ∈
[ϕ0 − ∆ϕ

2 , ϕ0 +
∆ϕ

2 ], (b) follows from the assumption of a
narrow beamwidth ∆ϕ and the fact that cosϕ0 = h

d , and (c)
follows from the derivation of serving distance in (3). With pϕ
closely approximated by (11), the antenna gain expression in
(4) will be used in statistically analyzing network performance
under the proposed CRE scheme introduced next.

C. Cell Range Expansion Scheme and Association Probability

Users can associate with either a low-frequency or mmWave
UAV based on average received signal power. A common
policy employs biased received power, where a bias factor
β > 0 adjusts the preference for mmWave UAVs. Let Slf and
Sm represent the average received power from the nearest low-
frequency and mmWave UAVs, respectively. The policy is:{

associate with mmWave UAV, if βSm > Slf ,

associate with low-frequency UAV, else,
(12)

Prior work often hand-tunes β to optimize network perfor-
mance [11]. In contrast, we define β in closed form based on

0 1 2 3 4 5 6 7 8 9 10

SE ratio 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

b
ia

s
 f
a
c
to

r 

favor low-frequency UAVs

favor mmWave UAVs

higher expected SE 

for mmWave UAVs

Fig. 2. An example bias function with β0 = 5, α = 1, and ζ = 1.

network statistics and system parameters. We first introduce
the SE ratio τ as

τ =
E[log2(1 + SINRm)]

E[log2(1 + SINRlf)]
, (13)

where SINRlf and SINRm are given in (1) and (2), respec-
tively. Then, we define our proposed bias factor β as

β = ζ · β0

1 + (β0 − 1) exp(α(1− τ))
, (14)

where the standardization term ζ is given by

ζ =
PlfKlfE

[
r−αlf

lf

]
PmGMKmE[r−αm

m ]
. (15)

Here, β0 represents the maximum value of β, and α controls
the growth rate, taking a sigmoid shape. ζ standardizes the
comparison between low-frequency and mmWave signals.

An example bias factor β is shown in Fig. 2. When τ = 1,
then β = 1 and there is no bias given to either frequency
band. When τ > 1, then β > 1 and mmWave UAVs are
favored. As τ increases, β saturates to prevent overloading
mmWave UAVs, even if their expected SE exceeds that of
low-frequency UAVs. When τ < 1, the bias shifts toward low-
frequency UAVs. Even as τ → 0, however, β is lower-bounded
by about 0.5, meaning the low-frequency signal strength Slf is
artificially inflated by at most a factor of around two, relative
to Sm. This prevents overloading low-frequency UAVs when
τ is extremely low. As evidenced by (14) and (15), calculating
β only depends on system parameters and network statistics,
namely the expectations E[r−αlf

lf ],E[r−αm
m ] and the expected

SE ratio τ , the latter of which we derive shortly.
Let us now derive the association probabilities under our

proposed scheme. For a fixed bias factor β, the probability
that a given user associates with a mmWave UAV is

Am = Erm [P(βSm > Slf)] (16)

= Erm

[
P
(
βPmGMKlfr

−αm
m > PlfKlfr

−αlf
)]

(17)

= Erm

[
P
(
rlf > η

1
αlf rαm/αlf

m

)]
(18)

=

∫ ∞

h

(
1− FRlf

(
η

1
αlf rαm/αlf

))
· fRm(r) dr, (19)



where η = PlfKlf

βPmGMKm
. The association probability for low-

frequency UAVs is then Alf = 1−Am.

D. Coverage Probability
Coverage probability is the probability that a user’s SINR

exceeds a given threshold, also known as the complementary
cumulative distribution function of SINR. Using the associa-
tion probability from before, the coverage probability of the
UAV network for some threshold γ can be expressed as,

PC(γ) = PClf
(γ) · Alf + PCm(γ) · Am, (20)

where PClf
and PCm

represent the independent coverage prob-
ability for low-frequency and mmWave, respectively. These
can be derived as follows. The low-frequency UAV coverage
probability is found as

PClf
(γ) = E[P(SINRlf > γ) (21)

= E
[
P
(
PlfglfKlfr

−αlf

σ2
lf + Ilf

> γ

)]
(22)

= E
[
P
(
glf > u1(r) ·

(
σ2
lf + Ilf

))]
(23)

(a)
= E

[
exp
(
−u1(r) ·

(
σ2
lf + Ilf

))]
(24)

=

∫ ∞

h

exp
(
−σ2

lfu1(r)
)
· LIlf (u1(r)) · fRlf

(r) dr,

where u1(r) = γ
PlfKlfr

−αlf
and (a) follows from glf ∼

Exponential(1). The mmWave UAV coverage probability can
be found as

PCm
(γ) = E[P(SINRm > γ)] (25)

= E
[
P
(
PmGMgmKmr

−αm

σ2
m + Im

> γ

)]
(26)

= E

[
P

(
gm >

γ
(
σ2
m + Im

)
PmGMKmr−αm

)]
. (27)

Since gm follows a Gamma distribution, the result in (28) on
the following page is obtained, where u2(r) =

γm
PmGMKmr−αm .

We will derive the Laplace transformations of the aggregate
interference for both the low-frequency and mmWave bands
in Section III-F.

E. Spectral Efficiency
Now, we will investigate the SE of the UAV network.

Assuming each user attains their maximum achievable SE,
we derive the average SE for low-frequency and mmWave
UAVs separately. For a typical user, the expected SE of low-
frequency UAVs can be computed as

SElf = E[log2(1 + SINRlf)] (29)

=

∫ ∞

h

E
[
log2

(
1 +

PlfglfKlfr
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The expected SE of mmWave UAVs is then found to be

SEm = E[log2(1 + SINRm)] (34)

=
1

ln 2

∫ ∞

h

E
[
ln

(
1 +

gm
(σ2

m + Im)/(PmGMKmr−αm)

)]
× fRm(r) dr (35)
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1

ln 2
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h
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0

K(z) · LIm(u2(r, z)) · exp
(
−σ2

mu2(r, z)
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× fRm(r) dz dr, (36)

where v1(r, t) = 2t−1
PlfKlfr

−αlf
, v2(r, z) = mz

PmGMKmr−αm , and
K(z) = 1

z − 1
z(1+z)2 . Here, (a) is based on [15, Part C,

Section 2]. Then, the expected SE of the UAV network can
be computed by SE = Am · SEm +Alf · SElf .

F. Laplace Transformation of Interference

We now derive the conditional Laplace transformation of
the aggregate interference. The Laplace transformations of
the total interference encountered by target users in the low-
frequency and mmWave bands, conditioned on a distance r to
its serving UAV, are given as follows. For the low-frequency
band, we have

LIlf (s|r) = EIlf [exp(−sIlf)]

= E
xi,g

(i)
lf

 ∏
xi∈Φlf/{x0}

exp
(
−sPlfg

(i)
lf Klfd

−αlf
i

)
(a)
= Exi
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xi∈Φlf/{x0}

1

1 + sPlfKlfd
−αlf
i


(b)
= exp

(
−2πλlf

∫ ∞

r

(
1− 1

1 + sPlfKlfz−αlf

)
· z dz

)
= exp

(
−2πλlf

∫ ∞

r

z

1 + s−1P−1
lf K−1

lf zαlf
dz

)
, (37)

where (a) follows from the moment generating function of glf
and (b) follows from the probability generating function of a
PPP, which is E

[∏
x∈Φ f(x) = exp

(
−λ
∫
R2(1− f(x)) dx

)]
.

And for the mmWave band, we have

LIm(s|r) = EIm [exp(−sIm)]

= E

 ∏
xi∈Φm/{x0}

exp
(
−sPmGxig

(i)
m Kmd−αm

i

)
(a)
= Exi,Gxi
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i

m

)−m


(b)
= exp

(
−2πλm

∫ ∞

r

(1−

EGx

[(
1 +

sPmGxKmz−αm

m

)−m
])

z dz

)
, (38)

where (a) follows from the moment generating function of gm
and (b) follows from the probability generating function of a
PPP. Note that, with the distribution of Gxi

given in (4), the
expectation in (38) can be computed directly. In turn, we are
able to characterize coverage probability and SE by evaluating
the derived analytical expressions.
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-15 -10 -5 0 5 10 15

SINR threshold (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

v
e

ra
g

e
 p

ro
b

a
b

ili
ty

Proposed (simulation)

Proposed (improved analysis)

Proposed (conventional analysis)

MAP (simulation)

(a) Coverage probability vs. SINR threshold.

5 6 7 8 9 10 11 12 13 14 15

Density ratio of mmWave and low-frequency, 
m

/
lf

0

1

2

3

4

5

6

7

A
v
e
ra

g
e
 d

a
ta

 r
a
te

 p
e
r 

u
s
e
r 

(M
b
p
s
)

Proposed (simulation)

MAP (simulation)

All-mmWave (simulation)

(b) Average per-user data rate vs. mmWave-to-low-
frequency UAV density ratio.

32 64 128 256 512

Number of Antennas

0

1

2

3

4

5

6

S
p
e
c
tr

a
l 
E

ff
ic

ie
n
c
y
 (

b
p
s
/H

z
)

Proposed (simulation)

Proposed (analysis)

MAP (simulation)

(c) Spectral efficiency vs. the number of mmWave
antennas.

Fig. 3. Comparison of coverage probability, per-user data rate, and spectral efficiency in multi-band UAV networks under our proposed CRE scheme.

IV. SIMULATION RESULTS

This section validates our analysis and evaluates the pro-
posed CRE scheme. The experimental parameters are as
follows: carrier frequencies flf = 2 GHz and fm = 60 GHz;
bandwidths Wlf = 20 MHz and Wm = 600 MHz; transmit
powers Pm = 40 dBm and Plf = 30 dBm; UAV height
h = 50 m; UAV densities λlf = 10 UAVs/km2 and λm =
500 UAVs/km2; user density λ = 5 × 104 users/km2; noise
powers σ2

lf = −91 dBm, σ2
m = −76 dBm; N = 64 antennas;

bias factor parameters β0 = 5 and α = 5; path loss exponents
αlf = 2.5 and αm = 3.

Fig. 3a depicts coverage probability versus SINR threshold
for four cases. The solid black line is empirical coverage
probability under our proposed CRE scheme, while the dashed
black line is its analytical counterpart using our derived an-
tenna gain distribution. The dashed blue line uses a simplified
antenna gain model assuming uniformly distributed elevation
angles [6], and the solid red line represents the conventional
MAP association policy. The proposed CRE scheme clearly
improves coverage probability compared to the MAP policy, as
it accounts for interference by encouraging users to associate
with mmWave UAVs. For instance, under an SINR threshold
of 0 dB, the proposed scheme increases the coverage proba-
bility from 65% to nearly 90%.

In Fig. 3b, we vary the mmWave-to-low-frequency UAV
density ratio, and the bias factor β is tuned accordingly using
(14), with τ and ζ computed from our derived expressions.
Simulations verify that the proposed CRE scheme significantly
improves per-user data rates compared to a conventional

MAP policy, especially as mmWave UAV density increases.
However, once the mmWave UAV density reaches a certain
threshold, the benefits of offloading become less apparent.
Overall, Fig. 3b demonstrates the practicality and effectiveness
of our closed-form bias factor β, which adapts to network
statistics and eliminates the need for real-time tuning.

Finally, Fig. 3c depicts the SE versus the numer of mmWave
antennas. As the number of antenna increases, SE improves
due to beamforming, which enhances signal strength and
reduces interference. This increases mmWave SE, attracting
more users to mmWave and narrowing the performance gap
between the proposed CRE scheme and MAP.

V. CONCLUSION

Using stochastic geometry, this paper has analyzed and opti-
mized multi-band UAV networks comprised of low-frequency
and mmWave UAV-mounted BSs. Our novel approach to
deriving the antenna gain distribution better captures interfer-
ence under beamforming, providing a more reliable measure
of network performance. Combined with our proposed CRE
scheme, which increases coverage probability and data rates by
biasing users toward mmWave UAVs with lower interference
and wider bandwidths, it offers a significant improvement over
existing methods. Under this proposed association policy, we
derive the association probability, coverage probability, and
spectral efficiency. Through both analysis and simulation, we
assess the proposed association policy over a traditional MAP
association policy, which confirms it as a simple yet effective
route to boost UAV network performance. Future work may
explore other factors to optimize network performance.
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