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Abstract

We present measurements and analysis of self-interference in multi-panel millimeter wave (mmWave)

full-duplex communication systems at 28 GHz. In an anechoic chamber, we measure the self-interference

power between the input of a transmitting phased array and the output of a colocated receiving phased

array, each of which is electronically steered across a number of directions in azimuth and elevation.

These self-interference power measurements shed light on the potential for a full-duplex communication

system to successfully receive a desired signal while transmitting in-band. Our nearly 6.5 million

measurements illustrate that more self-interference tends to be coupled when the transmitting and

receiving phased arrays steer their beams toward one another but that slight shifts in steering direction (on

the order of one degree) can lead to significant fluctuations in self-interference power. We analyze these

measurements to characterize the spatial variability of self-interference to better quantify and statistically

model this sensitivity. Our analyses and statistical results can be useful references when developing and

evaluating mmWave full-duplex systems and motivate a variety of future topics including beam selection,

beamforming codebook design, and self-interference channel modeling.

I. INTRODUCTION

Research on full-duplex millimeter wave (mmWave) systems has been motivated by the

potential for dense antenna arrays to strategically steer transmit and receive beams in a way
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that reduces self-interference [1], [2]. Proposed solutions for mmWave full-duplex (e.g., [2]–

[8]) typically make use of hybrid digital/analog beamforming to shape transmit and receive

beams that do not couple across the multiple-input multiple-output (MIMO) self-interference

channel present between separate transmit and receive arrays of a full-duplex transceiver. With

enough isolation between its transmit and receive beams, a full-duplex mmWave transceiver

could simultaneously transmit and receive in-band, offering improvements at the physical layer,

reduced latency, new approaches for medium access, and cost-effective solutions for network

deployment [1]. Full-duplex integrated access and backhaul (IAB), for instance, could serve a

downlink user while simultaneously receiving backhaul in-band, making better use of mmWave

spectrum while reducing latency between the network core and its edge [9]–[11].

Given the highly directional nature of mmWave communication, understanding the spatial

characteristics of self-interference is critical to evaluating proposed mmWave full-duplex solu-

tions. This is especially true when considering analog-only beamforming systems where digital

beamforming cannot be relied on to further mitigate self-interference. Currently, however, there

is not a strong understanding of self-interference in mmWave systems. Research and devel-

opment of full-duplex mmWave systems would benefit from measurement-backed insights on

self-interference power levels and spatial characteristics, particularly when beamformed phased

arrays are employed.

A. Prior Work Measuring and Modeling mmWave Self-Interference

One of the earliest known attempts to characterize mmWave self-interference was in [12],

where a beam-sweeping approach was taken to measure the received self-interference power for

a combination of transmit and receive beams. A relatively low number of beams were swept using

28 GHz 8 × 8 uniform planar arrays (UPAs) in indoor and outdoor environments, which offered

limited characterization of the spatial characteristics and the distribution of self-interference.

Nonetheless, this work provided a valuable first look at the expected self-interference power

levels seen by a multi-panel mmWave full-duplex system. In [13], using phased array transceivers,

a proof-of-concept 60 GHz, short-range, full-duplex communication link was established. The

authors observed performance improvements when varying the angular difference between the

two transceivers, suggesting that there exist noteworthy spatial characteristics in 60 GHz self-

interference. The work of [14] presents self-interference channel measurements at 28 GHz using

a pair of directional horn antennas for transmission and reception as well as omnidirectional
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dipole antennas. Little was shown on the variability with changes in transmit and receive

steering direction, though it was noted that some steering combinations offered starkly less

self-interference than others.

In [15] and [16], the authors conducted measurements of the 60 GHz self-interference channel

with a rotating channel sounder comprised of horn antennas used for transmission and reception,

which were fixed to the sounder. Measurements in [15] and [16] showed that large variations

in self-interference power can be seen as the sounder rotated in azimuth due to indoor features

such as large furniture. Clear gains in isolation were had with cross polarization and the self-

interference power delay profile saw variability across azimuth and elevation of the sounder. In

[17], self-interference channel measurements at 70 GHz were conducted using lens antennas,

which primarily provided insights on the degree of self-interference in various settings.

Measurements of mmWave self-interference in [12]–[17] are certainly useful but do not

offer a means to evaluate proposed mmWave full-duplex solutions since they provide neither

a MIMO self-interference channel model nor adequate beam-based measurements. To evaluate

beamforming-based mmWave full-duplex solutions thus far, researchers have primarily used

highly idealized channel models. For instance, the spherical-wave MIMO channel model [18]

has been used most widely to capture coupling between the arrays of a full-duplex mmWave

system. This extremely idealized geometric model is sensitive to small errors in the arrays’

relative geometry due to the small wavelength at mmWave, and it does not capture significant

artifacts of practical systems such as enclosures, mounting infrastructure, and non-isotropic

antenna elements. In fact, we show herein that this model does not align with the measurements

taken in this campaign. To account for environmental reflections—which were observed in [12]—

it has been common for researchers to combine a ray-based model with the spherical-wave

model in a Rician fashion [5], [19]. While this inches the model closer to a seemingly more

practical one, it has yet to be verified with measurement. Finally, we remark that the severity of

inaccurate self-interference channel models can lead to highly misleading results and conclusions

for beamforming-based mmWave full-duplex solutions. This is because, in theory, only very few

spatial degrees of freedom are needed to execute mmWave full-duplex and highly idealized

channel models may readily offer these degrees of freedom whereas practical ones may not.
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B. Contributions

Measuring and characterizing mmWave self-interference. Extending our work in [20],

we present the first set of spatially dense measurements of self-interference at 28 GHz using

finely steered phased arrays. Our nearly 6.5 million measurements shed light on the levels of

self-interference that a practical mmWave full-duplex system could expect using conventional

beam steering. This can drive the design requirements for full-duplex systems, including those

relying solely on beam steering and those with additional self-interference cancellation measures.

Importantly, we compare our measurements of self-interference against what one would expect

based on the idealized spherical-wave model in [18] to show that such a channel does not align

with reality—motivating the need for new, measurement-backed models. A spatial inspection

of our measurements uncovers large-scale trends in self-interference based on general transmit

and receive steering directions, as well as noteworthy small-scale variability when these steering

directions undergo small shifts (on the order of one degree).

Quantifying and statistically modeling the angular spread of self-interference. To explore

this small-scale variability further, we investigate the angular spread of self-interference. We

examine how self-interference varies over small spatial neighborhoods to quantify the range in

interference-to-noise ratio (INR), minimum INR, and maximum INR when small shifts are made

to the transmit and receive steering directions. We fit distributions to these quantities and tabulate

the fitted parameters for various spatial neighborhood sizes to supply engineers with tools for

conducting statistical analyses and evaluation of full-duplex mmWave systems. These findings

on the angular spread of self-interference shed light on the efficacy of mmWave full-duplex and

excitedly motivate a variety of future work including beam codebook design and beam selection.

This paper is organized as follows. In Section II, we describe our 28 GHz self-interference

measurement platform and methodology. In Section III, we provide a summary of our measure-

ments along with high-level spatial insights. In Section IV, we illustrate how small shifts in

transmit and receive steering directions can lead to significant variations in self-interference. We

conclude this paper in Section V.

II. MEASUREMENT SETUP & METHODOLOGY

In this section, we summarize the setup and methodology we used to collect measurements of

the 28 GHz self-interference channel. This campaign sought to measure self-interference between

the input of a transmitting phased array and the output of a colocated receiving phased array.
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(a) Simplified block diagram of our measurement setup. (b) Phased array measurement platform.

Fig. 1. (a) A simplified block diagram of our measurement setup using phased arrays to inspect self-interference at 28 GHz.

The degree of self-interference depends on the particular choice of transmit beam and receive beam. (b) The phased array

measurement platform in an anechoic chamber; receive array on left and transmit array on right.

Since the degree of self-interference coupled between the phased arrays depends on the steering

directions of their beams, it was measured across a variety of steering combinations.

Our mmWave self-interference measurement system, illustrated as a block diagram in Fig. 1a,

is comprised of two identical Anokiwave AWA-0134 28 GHz phased array modules [21]: one

for transmission and one for reception. Each phased array module consists of a 16 × 16 half-

wavelength UPA, offering high spatial resolution in azimuth and elevation. The transmit and

receive arrays were mounted to separate sides of a 60◦ equilateral triangular platform, as shown

in Fig. 1b, where the centers of the arrays were separated by 30 cm. This configuration aligns

with practical, multi-panel (sectorized) full-duplex mmWave deployments, such as for full-duplex

IAB as proposed in 3GPP [22]. The measurement platform was placed in an anechoic chamber

free from significant reflectors; valuable future work would investigate the impact of reflections.

Each array can be electronically steered by a network of digitally-controlled analog beamform-

ing weights, allowing us to form narrow transmit and receive beams to inspect the directional

characteristics of the direct coupling between the transmit and receive arrays. The transmit array

is driven by an upconverted 28 GHz Zadoff-Chu sequence with 100 MHz of bandwidth and

a power level of −15 dBm. The amplified and beamformed transmit signal is radiated by the

transmit array at an effective isotropic radiated power (EIRP) of 60 dBm before coupling over

the air with the receive array. The beamformed signal captured by the receive array is internally

amplified and downconverted before being digitized. Separate software-defined radio platforms
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(a) 3-D geometry. (b) Beam pattern.

Fig. 2. (a) The 3-D geometry observed by each phased array. (b) The idealized azimuth radiation pattern of our 16×16 transmit

UPA steered broadside. The elevation pattern is identical. The EIRP is 60 dBm, and the 3 dB beamwidth is roughly 7◦. The

pattern of the receive UPA steered broadside is identical.

[23] were used to generate signals in the transmit chain and capture signals in the receive

chain. In baseband, the transmit and receive signals were processed to estimate the isolation

from the input of the transmit array to the output of the receive array. In an effort to more

reliably measure isolation, we employed a single Rubidium oscillator and a custom lossless dual

upconversion/downconversion system built by Mi-Wave [24]. Correlation-based processing of the

Zadoff-Chu signals was used to estimate isolation levels that extend well below the noise floor at

the output of our receive array. We calibrated and verified our measurement capability using high-

fidelity test equipment [25] and stepped attenuators [26] to ensure our isolation measurements

had low error (typically less than 1 dB) across a broad range of received power levels (roughly

from −20 dBm to −110 dBm). Moreover, we confirmed the repeatability of our measurements

in both the short-term (milliseconds) and long-term (minutes).

To describe the arrays’ steering directions in 3-D, we use an azimuth-elevation convention

as illustrated in Fig. 2a. We assume independent coordinate systems for each array, where

each array is centered at the origin facing the positive x axis. From each array’s perspective,

broadside corresponds to 0◦ in azimuth and elevation (along the positive x axis), upward is an

increase in elevation φ (positive z direction), and rightward (positive y direction) is an increase

in azimuth θ. Each array can be independently steered toward a relative azimuth-elevation (θ, φ)

via beamforming weights. In this work, we employ conjugate beamforming (i.e., matched filter

beamforming), where a beam is formed in a particular direction by setting beam weights equal
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Fig. 3. The set of 2,541 transmit directions Atx used during measurement, shown here as their respective projections onto the

y-z plane, where looking into the page represents steering outward from the array (the positive x direction). The set of receive

directions Arx is identical, densely spanning −60◦ to 60◦ in azimuth and −10◦ to 10◦ in elevation, each in 1◦ steps.

to the conjugate of the array response in that direction. For context, the idealized pattern of a

transmit beam steered broadside is shown in Fig. 2b, which has a 3 dB beamwidth of around

7◦ in both azimuth and elevation; the shape of a broadside receive beam is identical. Naturally,

practical beam patterns will not be as well-defined nor exhibit the deep nulls as that shown in

Fig. 2b.

The key power levels and power ratios associated with our measurement setup are summarized

in Fig. 4. When steering the transmit array toward some (θtx, φtx) and receive array toward

(θrx, φrx), the power of self-interference coupled between the arrays is

PSI (θtx, φtx, θrx, φrx) = Ptx · L (θtx, φtx, θrx, φrx)−1 (1)

at the receive array output, where Ptx = −15 dBm is the power into the transmit array and

L (θtx, φtx, θrx, φrx) =
1∣∣∣w (θrx, φrx)T Hf (θtx, φtx)

∣∣∣2 (2)

is the effective isolation between the transmit array input and receive array output established

by transmit beamforming weights f and receive weights w; H ∈ C256×256 is the (unknown)

over-the-air self-interference channel matrix between the arrays and has scaling that accounts

for the inherent path loss along with transmit and receive gains. In other words, self-interference

power PSI includes the spatial coupling between the transmit and receive beams with the over-

the-air channel along with large-scale power gains introduced by the transmit array (e.g., power

amplifiers) and receive array (e.g., low noise amplifiers).

Sets of Ntx transmit directions and Nrx receive directions

Atx =
{(
θ

(i)
tx , φ

(i)
tx

)}Ntx

i=1
, Arx =

{(
θ(j)

rx , φ
(j)
rx

)}Nrx

j=1
(3)
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Fig. 4. A summary of the key power levels and power ratios associated with our measurement system.

are specified prior to executing our measurement campaign. We measure the self-interference

power between each transmit and receive steering combination for a total of Ntx×Nrx measure-

ments. Depicted in Fig. 3, the results in this work are based on measurements whose transmit and

receive directions are each distributed uniformly in azimuth from −60◦ to 60◦ with 1◦ spacing and

in elevation from −10◦ to 10◦ with 1◦ spacing. This amounts to Ntx = Nrx = 121× 21 = 2541

directions for transmission and for reception, totaling 2541×2541 ≈ 6.5 million self-interference

power measurements.

Referencing the measured self-interference power PSI to the noise floor of the receive array,

the INR for given transmit and receive directions can be written as

INR (θtx, φtx, θrx, φrx) =
PSI (θtx, φtx, θrx, φrx)

Pnoise

(4)

where Pnoise = −68 dBm is the noise power at the receive array output over 100 MHz. INR is

an important quantity for describing if a full-duplex system is self-interference-limited (INR� 0

dB), noise-limited (INR� 0 dB), or somewhere in between. For full-duplex, we desire low INR,

roughly INR ≤ 0 dB in most cases, to ensure self-interference does not erode full-duplexing

gain. The set of all nearly 6.5 million measured INR values we write as

I = {INR (θtx, φtx, θrx, φrx) : (θtx, φtx) ∈ Atx, (θrx, φrx) ∈ Arx} (5)

and refer to the INR measured when transmitting with the i-th transmit beam and receiving with

the j-th receive beam as

INRij = INR
(
θ

(i)
tx , φ

(i)
tx , θ

(j)
rx , φ

(j)
rx

)
. (6)
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A desired signal having received power Pdes (at the output of the receive array) would see a

signal-to-interference-plus-noise ratio (SINR) of

SINR (θtx, φtx, θrx, φrx) =
Pdes

Pnoise + PSI (θtx, φtx, θrx, φrx)
=

SNR

1 + INR (θtx, φtx, θrx, φrx)
(7)

where SNR is the signal-to-noise ratio (SNR) of the desired signal. Notice that SINR depends

on the level of self-interference incurred when steering the transmitter toward (θtx, φtx) and the

receiver toward (θrx, φrx); of course, SNR would practically also be a function of (θrx, φrx). This

work is solely concerned with measuring INR (self-interference), from which desired signals

having some SNR can be evaluated in a full-duplex sense. We would like to point out that all

measurements collected in this campaign are for a fixed setup as described; valuable future work

would investigate the impact of system parameters such as beam shape (e.g., beamwidth and

side lobe levels), array sizes, and panel geometries.

III. HIGH-LEVEL SUMMARY AND SPATIAL INSIGHTS

Perhaps the best summary of our measurements is the cumulative density function (CDF) of the

nearly 6.5 million measured INR values in Fig. 5. The maximum and minimum measured INR

were nearly 46.99 dB and −44.57 dB, respectively. The measured INR typically falls between

0 dB and 40 dB, with median INR at 20.27 dB. Nearly 99% of beam pairs offer an INR greater

than 0 dB, where self-interference power exceeds noise power. Around 90% of beam pairs yield

an INR ≥ 10 dB, where self-interference is at least ten times as strong as noise. Just over 2%

of beam pairs offer an INR ≤ 3 dB. Naturally, this CDF of INR would shift left/right if transmit

power were to decrease/increase or noise power were to increase/decrease, for instance; those

wishing to appropriately translate our measurements to systems with different power levels can

refer to Fig. 4.

Takeaways. At first glance, the CDF of the measured INR values seems quite pessimistic from

a full-duplex perspective, considering most beam pairs yield self-interference levels that are well

above the noise floor. Multi-panel full-duplex mmWave systems similar to ours will typically

be overwhelmed with self-interference when choosing a random transmit and receive beam,

motivating the need for additional means to reduce self-interference.1 Nonetheless, it is a welcome

sight to observe that there exist select beam pairs that do in fact offer INR levels sufficiently low

1We explore one method for reducing self-interference via small shifts of the transmit and receive beams in Section IV.
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Fig. 5. The CDF of the nearly 6.5 million measured INR values and its fitted log-normal distribution.

for full-duplex—we explore the directional nature of these beam pairs shortly in Subsection III-B.

Valuable future work would explore solutions to reduce self-interference and investigate how

system design choices can potentially reduce INR levels while maintaining service to users.

We found that the CDF in Fig. 5 can be well approximated by a log-normal distribution, shown

as a dashed line in Fig. 5. That is to say that the measured INR values in dB approximately

follow a normal distribution as

[I]dB

fit∼ N
(
µ, σ2

)
(8)

where µ = 20.32 and σ2 = 70.69 are the fitted mean and variance of the normal distribution.

Like the CDF in Fig. 5, changes to large-scale parameters that impact INR—such as the transmit

power or noise power—can be accounted for in µ to shift the fitted normal distribution left or

right. Albeit limited, engineers can make first-order statistical approximations of self-interference

via this log-normal distribution when drawing independently and identically distributed (i.i.d.)

INR values as [INR]dB ∼ N (µ, σ2). For instance, the probability that the INR of a random

transmit-receive beam pair will fall below γ (in linear units) can be well approximated as

P (INR ≤ γ) =
1

2

[
1 + erf

(
[γ]dB − µ
σ ·
√

2

)]
. (9)

A. Is an Idealized Near-Field Self-Interference Channel Model Realistic?

A natural question to ask before proceeding is if the aforementioned spherical-wave MIMO

channel model [18]—an idealized near-field propagation model—aligns with our measurements.
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(a) Measured INR. (b) Simulated INR with spherical-wave channel.

Fig. 6. (a) Measured INR as a function of azimuthal transmit and receive directions when φtx = φrx = 0◦. (b) The simulated

counterpart of (a) when using a spherical-wave near-field self-interference channel model [18], which clearly does not align well

with what was measured. This motivates the need for a new, measurement-backed channel model for mmWave self-interference.

If it does, self-interference power values could be realized deterministically via the product of

transmit and receive beamforming weights f and w with a MIMO channel matrix H based on the

spherical-wave model. Unfortunately, however, we found that the spherical-wave MIMO channel

model does not align with our measurements. Consider Fig. 6, where we plot the measured INR

values across the azimuth plane and the simulated counterpart using the spherical-wave MIMO

channel model. Notice that the two are starkly different, indicating that this idealized near-

field channel model—which has been used so frequently as a means to evaluate mmWave full-

duplex—does not translate to practical systems, which pose a number of nonidealities stemming

from array enclosures, mounting infrastructure, and non-isotropic antenna elements, for instance.

This motivates the need for a practical, measurement-backed MIMO channel model for mmWave

self-interference, which we plan to address in future work.

B. Maximum, Median, and Minimum INR for Particular Transmit Beams and Receive Beams

The CDF in Fig. 5 and its corresponding fitted distribution are certainly useful statistically but

do not provide any spatial insight on self-interference. As such, we now hone in on narrower

perspectives to better visualize and interpret our measurements spatially. First, let us begin by

considering Fig. 7a, which shows the maximum, median, and minimum INR observed by each

transmit beam across all receive beams; each dot corresponds to a transmit beam’s projection
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(a) Observed by each transmit beam. (b) Observed by each receive beam.

Fig. 7. For each transmit beam and receive beam, shown are the maximum, median, and minimum INR across all receive and

transmit beams, respectively.

onto the y-z plane (i.e., its direction from the perspective of the transmit array). In other words,

the maximum INR observed by the i-th transmit beam (the i-th dot) is simply maxj INRij ,

for example, with median and minimum expressed analogously. Fig. 7b similarly shows these

statistics observed when receiving a particular direction. Referencing Fig. 7b, we can see that

the median INR per receive beam ranges from approximately 8 dB to 35 dB. The maximum

INR observed at each receive beam is at least around 28 dB and at most over 46 dB, while

the minimum INR is at least around −45 dB and at most around 7 dB. In a similar fashion,

we examine these statistics for each transmit beam in Fig. 7a, which tell a similar story both

visually and numerically as the receive side.

Takeaways. There are a few important things to take away from Fig. 7a and Fig. 7b. As intuition

may suggest based on Fig. 1b, the results of Fig. 7a and Fig. 7b indicate that:

• transmitting to toward the receiver tends to couple more self-interference

• receiving toward the transmitter tends to couple more self-interference.

Considering minimum INR is at most around 7 dB in both, we see that (i) even when steering

our transmitter toward the receiver, there exist some receive beam(s) that offer low INR (at
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most around 7 dB) and (ii) even when steering our receiver toward the transmitter, there exist

some transmit beam(s) that offer low INR (at most around 7 dB). This suggests that—while

transmitting toward the receiver and receiving toward the transmitter generally results in more

self-interference—there exist receive beams and transmit beams that can offer low INR. In

Section IV, we observe that low-INR beam pairs appear to be distributed throughout space. We

have ongoing work that investigates if these low-INR beam pairs can in fact be used to serve users

with high beamforming gain while simultaneously offering reduced self-interference, facilitating

full-duplex operation. In a similar fashion, observing maximum INR illustrates that there also

consistently exists transmit-receive combinations that can lead to high self-interference. From

this, we can conclude that there are not transmit beams nor receive beams that universally offer

low or high INR—though there exist those that tend to. Rather, the amount of self-interference

coupled depends heavily on one’s choice of transmit beam and receive beam.

Takeaways. Additional takeaways include the fact that we observe strong similarities between the

transmit and receive profiles, which validates some degree of channel symmetry. However, there

do exist noteworthy differences, particularly the strong self-interference present when transmitting

around broadside but not when receiving. The high self-interference coupled when transmitting

around broadside is not necessarily expected nor easily explained; it can perhaps be attributed

to coupling behind the arrays due to mounting hardware and array enclosures. Also, we see

significantly more variation across y than z, suggesting that the azimuth of the steering direction

plays a greater role than elevation, which one may expect since our transmitter and receiver are

separated in azimuth but not in elevation. While it may seem obvious that transmitting toward

the receiver and receiving toward the transmitter would couple the most self-interference, it was

not clear that this would be the case since the transmit and receive arrays exist in the near-field

of one another. The far-field distance of our arrays is approximately 2.4 meters based on the

rule-of-thumb 2D2/λ [27], while our arrays are separated by only 30 cm. The reactive/radiating

near-field boundary, on the other hand, is around a mere 23 cm based on the rule-of-thumb

0.62
√
D3/λ [27], suggesting that our arrays live just within the radiating near-field of one

another. Operating in this near-field regime, the highly directional beams created by our UPAs

are not necessarily “highly directional” from the perspective of one another [1].
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(a) Observed by each transmit beam. (b) Observed by each receive beam.

Fig. 8. For each transmit beam and receive beam, shown is the fraction of receive beams and transmit beams, respectively, that

meet various INR thresholds.

C. Meeting INR Thresholds with Particular Transmit Beams and Receive Beams

Having looked at the maximum, median, and minimum INR for particular transmit beams and

receive beams, we now examine the fraction of beams that offer certain levels of INR. In Fig. 8a,

for each transmit beam, we look at the fraction of receive beams that offer at most 10 dB, 20

dB, and 30 dB of INR. Similarly, in Fig. 8b, for each receive beam, we look at the fraction of

transmit beams that offer these same levels of INR. From the top plot of each, we see that a

modest INR threshold of 10 dB (where self-interference is ten times stronger than noise) cannot

be met very reliably by any transmit beam nor any receive beam. At best, select beams can only

meet this target INR around 50% of the time, with the vast majority falling quite short of this.

Naturally, as the INR threshold rises to 20 dB, the fraction of beams that can meet this threshold

increases. Transmit and receive options emerge that offer an INR of at most 20 dB over 50%

of the time, with some approaching 100%. Still, however, the transmit beams steering rightward

toward the receiver and the receive beams steering leftward toward the transmitter struggle to

offer an INR below 20 dB. Increasing the INR threshold further, nearly all transmit and receive

beams can confidently offer an INR within 30 dB, though those least likely to do so are the
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rightward transmit beams, leftward receive beams, and broadside transmit beams.

Takeaways. The most promising transmit beams and receive beams in meeting an INR threshold

of 20 dB, for example, can be seen as thin vertical strips of bright yellow. These vertical strips,

which were also visible as low-INR beams in Fig. 7, are likely attributed to nulls in the transmit

and receive beam patterns. Notice, however, since the statistics of Fig. 8 were taken over all

transmit/receive beams, it shows that the transmit nulls are robust to some degree, somewhat

reliably offering lower INR regardless of the receive beam being used (and vice versa). These

transmit and receive beams offering lower INR across large fractions of receive beams and

transmit beams, respectively, correspond to the approximate transmit and receive nulls at the

channel input and output (i.e., approximate right and left null spaces of H), respectively. Recall,

from Fig. 7a and Fig. 7b, we did not see any transmit beams or receive beams that universally

provided high isolation. If indeed these vertical strips are attributed to nulls in the beam patterns,

this suggests that the self-interference channel between the transmit and receive arrays is quite

directional, which somewhat further bucks the thought that near-field interaction dominates their

coupling. Our future work will explore this to better understand the coupling nature of the arrays.

D. INR for Particular Transmit-Receive Beam Pairs

Honing in further, we now look at the isolation achieved at each transmit beam for a particular

receive beam and at each receive beam for a particular transmit beam, as shown in Fig. 9a and

Fig. 9b. Let us first consider the INR observed across receive beams for particular transmit

beams; imagine fixing the transmit beam and sweeping the receive beam to measure INR at

each. In Fig. 9b, we have selected two transmit directions: toward the receive array (top plot)

and away from the receive array (bottom plot). For each, have shown the INR measured between

the transmit beam and each receive beam option. Shown in the top plot of Fig. 9b, when

transmitting rightward toward the receiver (whose direction is shown as a red circle), we see

fairly high INR across the receive profile. Large orange/yellow spots make up most of the receive

profile, highlighting just how difficult it may be to find a receive beam that offers low INR for

this particular transmit beam. There exist some low-INR receive options narrowly in between

large spots of orange or at high and low elevation.

Now, looking at the bottom plot of Fig. 9b, when steering the transmitter leftward away from

the receiver, the INR profile across receive beams expectedly changes. The INR profile sees
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(a) Observed by each transmit beam. (b) Observed by each receive beam.

Fig. 9. For each transmit beam and receive beam, shown is the measured INR across all receive and transmit beams, respectively.

The red circle indicates the (a) receive direction and (b) transmit direction.

a widespread decrease of about 10 dB or more and options for extremely low INR are more

available. Still, receiving leftward toward the transmitter remains the least attractive option and

reinforces that isolation may tend to be lower when transmitting rightward toward the receiver

and when receiving leftward toward the transmitter—but this is not universally the case. Looking

at both plots in Fig. 9b, the receive beam that offers minimum INR varies with transmit beam,

which further backs our claim that there are not receive beams that universally offer low INR.

Moreover, the low-INR receive directions are typically quite narrow in the sense that small

changes in receive direction can lead to significant changes in isolation. For instance, when

transmitting rightward toward the receiver, the INR across receive beams varies by about 60 dB,

and we see that shifting a receive beam by only 1◦ to 2◦ in azimuth and/or elevation can lead to

changes of 20–30 dB or more in INR. Notice that this sensitivity to steering direction is much

more apparent with low-INR beams than high-INR ones.

Similarly, in Fig. 9a, we have selected two receive directions and, for each, have shown the

INR measured between the receive beam and each transmit beam. Analogous conclusions can

be drawn as with Fig. 9b, though there are useful comments to make. Again, varying with

each receive beam, there exists an INR-minimizing transmit beam. Notice that even when the

receive beam is steered away from the transmit array (to the right; top plot), transmitting toward

the receive array (to the right) still inflicts substantial self-interference. We can clearly see that

simply steering the transmitter away from the receiver or steering the receiver away from the
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∆φ

∆θ
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∆θ

Transmit, T (i)
tx Receive, T (j)

rx

Fig. 10. The transmit and receive steering neighborhoods T (i)
tx and T (j)

rx , where the filled circles indicate the nominal steering

directions
(
θ
(i)
tx , φ

(i)
tx

)
and

(
θ
(j)
rx , φ

(j)
rx

)
and the unfilled circles indicate directions comprising the (∆θ,∆φ)-neighborhood

surrounding each. In this case, the 25 directions in each yields 252 = 625 transmit-receive steering combinations.

transmitter does not offer widespread low INR. Comparing Fig. 9a and Fig. 9b, we observe a

certain degree of symmetry. Transmitting toward the receiver (top Fig. 9b) is similar to receiving

toward the transmitter (bottom Fig. 9a). Transmitting away from the receiver (bottom Fig. 9b)

is similar to receiving away from the transmitter (top Fig. 9a). This further verifies a sense of

spatial symmetry of our self-interference channel H.

Takeaways. Fig. 9a and Fig. 9b highlight that there exist large-scale (global) trends in the

amount of self-interference coupled between the transmit and receive arrays, since general

steering direction of the transmitter and receiver can play a significant role in the INR profile.

In addition, they also illustrate the local phenomena present in the INR profile: small shifts in

steering direction can have drastic impacts on the degree of self-interference coupled. Fig. 9a

and Fig. 9b showed this sensitivity of the transmit beam and receive beam separately—in the

next section, we investigate this sensitivity when the transmit beam and receive beam both see

small shifts in their steering direction.

IV. QUANTIFYING THE ANGULAR SPREAD OF MMWAVE SELF-INTERFERENCE

In this section, we inspect how self-interference varies with small changes in transmit and

receive directions. Let us begin by defining ] (α, β) as the absolute difference between two

angles α, β (in degrees), written as

] (α, β) =

ζ, ζ ≤ 180◦

360◦ − ζ, ζ > 180◦
(10)
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Fig. 11. The number of transmit-receive beam pairs for a typical (∆θ,∆φ)-neighborhood under our (1◦, 1◦) resolution.

where ζ = |α− β| mod 360◦ and mod is the modulo operator. Let T (i)
tx and T (j)

rx be the

(∆θ,∆φ)-neighborhoods around the i-th transmit direction and j-th receive direction, respec-

tively, defined as

T (i)
tx (∆θ,∆φ) =

{
(θ, φ) ∈ Atx : ]

(
θ, θ

(i)
tx

)
≤ ∆θ,]

(
φ, φ

(i)
tx

)
≤ ∆φ

}
(11)

T (j)
rx (∆θ,∆φ) =

{
(θ, φ) ∈ Arx : ]

(
θ, θ(j)

rx

)
≤ ∆θ,]

(
φ, φ(j)

rx

)
≤ ∆φ

}
(12)

and illustrated in Fig. 10. For some (∆θ,∆φ) in degrees, the cardinality of these sets is∣∣∣T (i)
tx (∆θ,∆φ)

∣∣∣ , ∣∣T (j)
rx (∆θ,∆φ)

∣∣ ≤ (2 ·∆θ + 1) · (2 ·∆φ+ 1) (13)

with equality when not at the edge of the measurement space (which is typical); the crude use

of ∆θ and ∆φ here is thanks to our 1◦ spacing of Atx and Arx.

Then, let Iij(∆θ,∆φ) be the set of measured INR values across the (∆θ,∆φ)-neighborhood

surrounding the (i, j)-th transmit-receive beam pair, expressed as

Iij(∆θ,∆φ) =
{
INR(θtx, φtx, θrx, φrx) : (θtx, φtx) ∈ T (i)

tx (∆θ,∆φ) , (θrx, φrx) ∈ T (j)
rx (∆θ,∆φ)

}
(14)

where T (i)
tx and T (j)

rx depends on the beam pair (i, j) and neighborhood size (∆θ,∆φ). As the

(∆θ,∆φ)-neighborhoods are widened, the cardinality of Iij grows, which is simply the product

of that of T (i)
tx and T (j)

rx .

|Iij(∆θ,∆φ)| =
∣∣∣T (i)

tx (∆θ,∆φ)
∣∣∣ · ∣∣T (j)

rx (∆θ,∆φ)
∣∣ (15)
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Based on (13), the upper bound of (15) is tabulated for various (∆θ,∆φ) in Fig. 11, which

grows with order O (∆θ2 ·∆φ2).

The minimum INR and maximum INR offered by beam pairs across the (∆θ,∆φ)-neighborhood

surrounding the (i, j)-th beam pair can be expressed as simply

INRmin
ij (∆θ,∆φ) = min {Iij(∆θ,∆φ)} (16)

INRmax
ij (∆θ,∆φ) = max {Iij(∆θ,∆φ)} . (17)

Using these, the INR range (in dB) we define as

INRrng
ij (∆θ,∆φ) =

[
INRmax

ij (∆θ,∆φ)
]

dB
−
[
INRmin

ij (∆θ,∆φ)
]

dB
≥ 0 (18)

which captures how much the INR can vary over the (∆θ,∆φ)-neighborhood surrounding

the (i, j)-th beam pair. By examining INRmin
ij (∆θ,∆φ), INRmax

ij (∆θ,∆φ), and INRrng
ij (∆θ,∆φ)

for each transmit-receive steering combination (i, j) and for variably sized neighborhoods, we

can gain insight into the angular spread of self-interference. We point out that, since our

measurements were taken with 1◦ resolution in azimuth and elevation, there exists the potential

to see greater INR range, lower minimum INR, and/or higher maximum INR if sub-(1◦, 1◦)

resolutions were used; as such, the results herein can be considered a potentially conservative

measure on these statistics over small neighborhoods.

A. INR Range over Various Neighborhoods

In Fig. 12a, we plot the CDF of INR range for variably sized (∆θ,∆φ)-neighborhoods across

all measured direction pairs (i.e., each CDF contains nearly 6.5 million points). As shown in

Fig. 12a, moving a beam pair by only 1◦ in either azimuth or elevation can lead to notable

changes in INR: around 25% of beam pairs observe over 10 dB of INR range in either case. As

the neighborhood size increases, we naturally observe a wider range of INR. 50% of beam pairs

see more than 17 dB of variability in INR across a (1◦, 1◦)-neighborhood. In other words, if we

consider a beam pair at random and look around its (1◦, 1◦)-neighborhood, we would expect the

INR to vary by 17 dB or more. Across a (2◦, 2◦)-neighborhood, 80% of beam pairs see around 25

dB or more of variability in INR. Notice that there exists slightly more variability in INR across

azimuth than across elevation, evidenced by the (1◦, 0◦)- and (0◦, 1◦)-neighborhoods—perhaps

due to the horizontal separation of our transmit and receive arrays.
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(a) INRrng
ij (∆θ,∆φ). (b) αrng(∆θ,∆φ) and βrng(∆θ,∆φ).

Fig. 12. (a) The CDF of INRrng
ij across all nearly 6.5 million transmit-receive beam pairs for various neighborhood sizes

(∆θ,∆φ). Fitted distributions for each are shown as dashed lines. (b) The fitted parameters αrng(∆θ,∆φ) and βrng(∆θ,∆φ)

for various ∆θ = ∆φ.

To provide engineers with statistics on INRrng
ij for variably sized (∆θ,∆φ)-neighborhoods, we

have fit a distribution to
{
INRrng

ij (∆θ,∆φ)
}

. Specifically, we found that a Gamma distribution

can be fitted to each of the CDFs in Fig. 12a as follows{[
INRrng

ij (∆θ,∆φ)
]

dB
∀ i, j

}
fit∼ Gamma (αrng(∆θ,∆φ), βrng(∆θ,∆φ)) (19)

where αrng(∆θ,∆φ) > 0 and βrng(∆θ,∆φ) > 0 are the fitted shape and rate (inverse scale)

of the Gamma distribution. The fitted Gamma distributions for each neighborhood in Fig. 12a

are shown as dashed lines. In addition, we have plotted αrng (∆θ,∆φ) and βrng (∆θ,∆φ) as

functions of ∆θ = ∆φ in Fig. 12b. As ∆θ = ∆φ increases, the shape parameter αrng drastically

increases and the rate parameter βrng decays toward zero, which is a reflection of the CDFs in

Fig. 12a shifting rightward.

In addition to those shown in Fig. 12, we fitted unique Gamma distributions for ∆θ,∆φ ∈
{0◦, 1◦, . . . , 5◦} and tabulated the fitted parameters (αrng (∆θ,∆φ) , βrng (∆θ,∆φ)) for each in

Table I. Engineers wishing to realize the range in INR over a random (∆θ,∆φ)-neighborhood or

conduct statistical analyses related to such can refer to Table I for adequate Gamma distribution

parameters (αrng (∆θ,∆φ) , βrng (∆θ,∆φ)). Then, the expected range in INR (in dB) over some

(∆θ,∆φ)-neighborhood, for instance, can be approximated as simply

E
[
INRrng

ij (∆θ,∆φ)
]

=
αrng (∆θ,∆φ)

βrng (∆θ,∆φ)
(20)
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(a) Observed by each transmit beam. (b) Observed by each receive beam.

Fig. 13. For each transmit beam and receive beam, shown are the fraction of receive beams and transmit beams, respectively,

that can offer an INR of 0 dB or less when allowed to deviate by various (∆θ,∆φ). Low INR becomes reliably within arm’s

reach by increasing (∆θ,∆φ).

based on the Gamma distribution, along with an assortment of other statistics readily computed.

Takeaways. Fig. 12a highlights that the self-interference channel is not spatially smooth. Rather,

small changes in steering direction can result in significant changes in the degree of self-

interference coupled and, hence, significant changes in full-duplex performance. As such, mmWave

full-duplex systems cannot expect to reliably avoid self-interference by broadly steering transmit

and receive beams. Instead, transmit and receive beams will need to be carefully (and jointly)

steered, as small errors in steering direction can lead to drastic changes in self-interference.

B. Minimum INR over Various Neighborhoods

Now, we examine the minimum INR that can be reached by each beam pair if allowed

to deviate around some spatial neighborhood. To illustrate this, we have included Fig. 13. In

Fig. 13a, at each transmit beam, we show the fraction of receive beams that can offer a minimum

INR of 0 dB or less. We do this for various neighborhood sizes (∆θ,∆φ), where a (0◦, 0◦)-

neighborhood is simply no deviation. With a (0◦, 0◦)-neighborhood, most transmit-receive beams
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(a) INRmin
ij (∆θ,∆φ). (b) µmin(∆θ,∆φ) and σ2

min(∆θ,∆φ).

Fig. 14. (a) The CDF of INRmin
ij (∆θ,∆φ) for various (∆θ,∆φ). For each, the fitted distribution is shown as a dashed line.

(b) The fitted parameters µmin(∆θ,∆φ) and σ2
min(∆θ,∆φ) for various ∆θ = ∆φ.

cannot meet the INR threshold of 0 dB. As the neighborhood grows to (1◦, 1◦), we see that,

for some transmit beams, a large fraction of receive beams can reach an INR of 0 dB (and

vice versa). With (2◦, 2◦) of freedom, we see the clouds of yellow grow as more receive beams

offer an INR of 0 dB for even more transmit beams. Fig. 13 illustrates the significant changes

observed in INR due to slight shifts of the transmit and receive beams and shows that INR levels

suitable for full-duplex are in fact within arm’s reach.

Consider Fig. 14a, where we plot the CDF of
{
INRmin

ij

}
for variably sized (∆θ,∆φ)-neighborhoods

across all measured beam pairs. The dashed black line in Fig. 14a is simply the CDF of {INRij}
for each beam pair since ∆θ = ∆φ = 0◦ (shown previously in Fig. 5). When considering small

neighborhoods around each beam pair, however, much more promising results are observed.

When shifting beams by no more than 1◦ in azimuth and elevation, the probability of reaching

INR ≤ 0 dB (where self-interference is no stronger than noise) grows to over 25% from around

1%. With 2◦, it grows to over 65%; that is to say that over 65% of beam pairs are within (2◦, 2◦)

of a beam pair that offers INR ≤ 0 dB.

Takeaways. Clearly, INR can be greatly improved with slight shifts in the steering directions

of the transmit and/or receive beams. From this, we draw an important conclusion: steering

directions that do not inherently offer high isolation (i.e., low INRij) are likely spatially near

ones that do. These are highly encouraging results for the potential of mmWave full-duplex since
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they suggest that self-interference can be greatly reduced while making very minor adjustments to

the transmit and receive steering directions. This is reinforced further by the fact that our beams

have a 3 dB beamwidth around 7◦, meaning slight deviations will hopefully not sacrifice too

much beamforming gain when making these adjustments. To reach these low-INR beam pairs,

however, it may require searching over many beam pairs within a small spatial neighborhood,

as highlighted by Fig. 11. For instance, with our 1◦ resolution, a typical (2◦, 2◦)-neighborhood

contains 625 transmit-receive beam pairs, highlighting that there may be practical hurdles in

locating low-INR beam pairs within a given neighborhood. Exploring how side lobes, beamwidth,

relative array geometry, and mounting infrastructure play a role in this small-scale variability

would be valuable future work.

To conduct statistical analyses of INRmin
ij , we have fit a distribution to

{
INRmin

ij (∆θ,∆φ)
}

for

variably sized (∆θ,∆φ)-neighborhoods. Specifically, we found that a normal distribution can be

fitted to each of the CDFs in Fig. 14a as follows{[
INRmin

ij (∆θ,∆φ)
]

dB
∀ i, j

}
fit∼ N

(
µmin(∆θ,∆φ), σ2

min(∆θ,∆φ)
)

(21)

where µmin(∆θ,∆φ) and σ2
min(∆θ,∆φ) are the fitted mean and variance of the normal distribu-

tion. The dashed lines in Fig. 14a depict each neighborhood’s fitted distribution, and Fig. 14b

show the fitted parameters for various ∆θ = ∆φ. Shown as the solid line in Fig. 14b, the

mean INRmin
ij (∆θ,∆φ) steadily decreases by about 10 dB per unit increase in ∆θ = ∆φ before

beginning to saturate. The dashed line shows the variance of the fit, which initially increases

and then decreases, which suggests that (1◦, 1◦) and (2◦, 2◦) of deviation can offer a reduction

in INR but by highly variable amounts—evident also by their distributions in Fig. 14a. The

variance decreases as the majority of beam pairs can reach similar levels of INR with (3◦, 3◦)

or greater of deviation; the distributions in Fig. 14a become more upright.

For neighborhood sizes where ∆θ,∆φ ∈ {0◦, 1◦, . . . , 5◦}, we tabulated the fitted parameters

(µmin (∆θ,∆φ) , σ2
min (∆θ,∆φ)) in Table II. To conduct statistical analyses related to minimum

INR, engineers can refer to Table II for adequate distribution parameters µmin (∆θ,∆φ) and

σ2
min (∆θ,∆φ). For instance, to realize the minimum INR over a random neighborhood of size

(∆θ,∆φ), engineers can simply draw[
INRmin (∆θ,∆φ)

]
dB
∼ N

(
µmin (∆θ,∆φ) , σ2

min (∆θ,∆φ)
)
. (22)
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Fig. 15. The CDF of
{

∆INRmin
ij (∆θ,∆φ, INRij) : INRij ≈ INR

}
for various INR, where (∆θ,∆φ) = (2◦, 2◦). Their fitted

counterparts are shown as dashed lines.

Plenty of statistics and statistical functions are readily available for the normal distribution which

can be used to conduct system performance analyses. For instance, when
[
INRmin (∆θ,∆φ)

]
dB
∼

N (µmin (∆θ,∆φ) , σ2
min (∆θ,∆φ)), the probability that the (∆θ,∆φ)-neighborhood surrounding

a random beam pair exhibits a minimum INR of at most ζ is

P
(
INRmin ≤ ζ; ∆θ,∆φ

)
=

1

2

[
1 + erf

(
[ζ]dB − µmin (∆θ,∆φ)

σmin (∆θ,∆φ) ·
√

2

)]
. (23)

While fitting the CDFs in Fig. 14a directly to normal distributions is useful, it does not capture

how the distribution of INRmin
ij varies as a function of INRij . In other words, it does not provide

insight on if high-INR beam pairs are as likely to be within arm’s reach of low INR as low-INR

beam pairs are, for instance. To provide more detailed statistics on INRmin
ij based on INRij , we

begin by computing

∆INRmin
ij (∆θ,∆φ, INRij) = [INRij]dB −

[
INRmin

ij (∆θ,∆φ)
]

dB
≥ 0 (24)

which is the difference (in dB) between the inherent INR offered by the (i, j)-th beam pair and

the minimum INR of its surrounding (∆θ,∆φ)-neighborhood. We subsequently form the set

Dmin (∆θ,∆φ, INR) =
{

∆INRmin
ij (∆θ,∆φ, INRij) : INRij ≈ INR

}
(25)

which is the set of all ∆INRmin
ij (∆θ,∆φ, INRij) values for beam pairs offering an INRij of

approximately INR. The approximation here is merely used to ensure Dmin has a sufficient
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number of points in it to successfully fit it, as will become clear. We found that the distribution

of Dmin could be well approximated by a Gamma distribution as

Dmin (∆θ,∆φ, INR)
fit∼ Gamma (αmin(∆θ,∆φ, INR), βmin(∆θ,∆φ, INR)) (26)

where αmin(∆θ,∆φ, INR) and βmin(∆θ,∆φ, INR) are the fitted shape and rate parameters, pa-

rameterized by INR in addition to (∆θ,∆φ). Alongside the true CDFs of various Dmin, we

plotted their fitted distributions using dashed lines in Fig. 15 for various INR and a (2◦, 2◦)-

neighborhood. This illustrates that extremely low-INR beam pairs tend to see less reduction

in INR over their neighborhoods compared to that of high-INR beam pairs. This is somewhat

expected but also indicates that low-INR beam pairs are not congregated together but rather

spread out throughout our transmit-receive space.

In Table III, we tabulated (αmin, βmin) for INR ∈ {−20,−10, . . . , 40} dB to provide engi-

neers with αmin(∆θ,∆φ, INR) and βmin(∆θ,∆φ, INR) for particular INR values. To approximate

αmin(∆θ,∆φ, INR) and βmin(∆θ,∆φ, INR) for any INR ∈ [−20, 40] dB, weighted interpolation

can be used, for instance. It is our hope that this means to realize ∆INRmin
ij for particular INRij

is useful for statistical analyses, simulation, and system evaluation. For instance, one may draw

INR from the global distribution (i.e., the CDF in Fig. 5) as [INR]dB ∼ N (µ, σ2) and then use it

when referencing Table III to fetch αmin(∆θ,∆φ, INR) and βmin(∆θ,∆φ, INR) based on some

neighborhood size (∆θ,∆φ). From there, a realization of INRmin(∆θ,∆φ, INR) can be drawn as[
INRmin(∆θ,∆φ, INR)

]
dB
∼ [INR]dB −Gamma (αmin(∆θ,∆φ, INR), βmin(∆θ,∆φ, INR))︸ ︷︷ ︸

∆INRmin(∆θ,∆φ,INR)

(27)

which is the minimum INR over the (∆θ,∆φ)-neighborhood surrounding a beam pair offering

a nominal INR of INR. Statistical analysis can be conducted using the Gamma distribution,

for instance, CDF as follows. When ∆INRmin (∆θ,∆φ, INR) follows a Gamma distribution

with parameters αmin (∆θ,∆φ, INR) and βmin (∆θ,∆φ, INR), the probability that the (∆θ,∆φ)-

neighborhood surrounding a random beam pair having an INR of INR exhibits a minimum INR

of ζ or less is

P
(
INRmin ≤ ζ; ∆θ,∆φ, INR

)
=
γ (αmin (∆θ,∆φ, INR) , βmin (∆θ,∆φ, INR) · [ζ]dB)

Γ(αmin (∆θ,∆φ, INR))
(28)

where Γ(·) is the Gamma function and γ(·, ·) is the lower incomplete Gamma function.



26

(a) INRmax
ij (∆θ,∆φ). (b) µmax(∆θ,∆φ) and σ2

max(∆θ,∆φ).

Fig. 16. (a) The CDF of INRmax
ij (∆θ,∆φ) for various (∆θ,∆φ). (b) The fitted parameters µmax(∆θ,∆φ) and σ2

max(∆θ,∆φ)

for various ∆θ = ∆φ.

C. Maximum INR over Various Neighborhoods

As was done for minimum INR over various neighborhoods, we have conducted an analysis

and modeling for maximum INR over various neighborhoods. In Fig. 16a, we plot the CDF of

INRmax
ij (∆θ,∆φ) of all nearly 6.5 million beam pairs for variably sized neighborhoods. Shown

in black is the (0◦, 0◦)-neighborhood, which is simply the CDF of INRij . Deviating by at most

(1◦, 1◦), the median INRmax
ij sees about a 6 dB increase from about 20 dB to 26 dB. Notice that

the lower tail stops around 4 dB, meaning all nearly 6.5 million beam pairs are within (1◦, 1◦) of

a beam pair offering an INR of 4 dB or more. Deviating by at most (2◦, 2◦), the median INRmax
ij

increases to 30 dB and the lower tail stops above 10 dB. This trend continues with diminishing

gains as the neighborhood is widened.

Takeaways. Before, our analysis of INRmin
ij highlighted that INR levels more attractive for full-

duplex operation can be reached by small shifts in transmit and receive steering direction. Fig. 16a

highlights that small shifts in steering direction can likewise degrade (increase) INR. In fact, even

beam pairs with very low INR inherently are highly sensitive, considering a (1◦, 1◦) shift (at most)

can lead to INR levels well above 0 dB, where full-duplex systems would be overwhelmingly

self-interference-limited. As such, small shifts in the transmit and/or receive beams have the

potential to drive self-interference to levels unfit for full-duplex. Therefore, if attempting to

steer along high-isolation beam pairs to mitigate self-interference, there needs to be fairly high
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Fig. 17. The CDF of
{

∆INRmax
ij (∆θ,∆φ, INRij) : INRij ≈ INR

}
for various INR, where (∆θ,∆φ) = (2◦, 2◦). Their fitted

counterparts are shown as dashed lines. Beam pairs with inherently low INR are typically at a greater risk of large increases in

INR caused by small shifts in the transmit and receive beams.

accuracy in doing so, potentially motivating high-resolution phase shifters, for instance.

Like before, we fit a distribution to the CDFs in Fig. 16a to offer engineers a statistical tool

for INRmax
ij . We fit a normal distribution as follows{[

INRmax
ij (∆θ,∆φ)

]
dB
∀ i, j

}
fit∼ N

(
µmax(∆θ,∆φ), σ2

max(∆θ,∆φ)
)

(29)

where µmax(∆θ,∆φ) and σ2
max(∆θ,∆φ) are the fitted mean and variance of the normal dis-

tribution. The dashed lines in Fig. 16a depict each neighborhood’s fitted distribution. Fig. 16b

shows the resulting fitted µmax (∆θ,∆φ) and σ2
max (∆θ,∆φ) for various ∆θ = ∆φ. Naturally,

the mean µmax (∆θ,∆φ) increases with neighborhood size but does so with diminishing gains.

The variance σ2
max (∆θ,∆φ) sees a sharp decrease with ∆θ = ∆φ = 1◦ from 0◦. This highlights

that so many of the nearly 6.5 million beam pairs are within a mere (1◦, 1◦) of notably higher

INR. The variance continues to trend down as the neighborhood widens since high-INR beam

pairs can be more reliably reached. In addition to the select neighborhoods in Fig. 16a, we

have tabulated the fitted parameters (µmax (∆θ,∆φ) , σ2
max (∆θ,∆φ)) for a variety of (∆θ,∆φ)

in Table IV, as was done for INRrng
ij and INRmin

ij . Engineers can use these distributions to conduct

a variety of statistical analyses related to INRmax
ij (e.g., worst-case analyses analogous to (23)).

As was done with minimum INR, we conduct a statistical fit of INRmax
ij that depends on INRij .
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We define ∆INRmax
ij (∆θ,∆φ) as

∆INRmax
ij (∆θ,∆φ, INRij) =

[
INRmax

ij (∆θ,∆φ)
]

dB
− [INRij]dB ≥ 0 (30)

which is the difference (in dB) between the maximum INR within the (∆θ,∆φ)-neighborhood

surrounding the (i, j)-th transmit-receive beam pair and the INR offered by that beam pair. We

form the set

Dmax (∆θ,∆φ, INR) =
{

∆INRmax
ij (∆θ,∆φ, INRij) : INRij ≈ INR

}
(31)

by collecting all ∆INRmax
ij (∆θ,∆φ, INRij) for beam pairs offering an INRij of approximately

INR. We again use a Gamma distribution to approximate the distribution of Dmax as

Dmax (∆θ,∆φ, INR)
fit∼ Gamma (αmax(∆θ,∆φ, INR), βmax(∆θ,∆φ, INR)) (32)

where αmax(∆θ,∆φ, INR) and βmax(∆θ,∆φ, INR) are the fitted shape and rate parameters,

parameterized by INR in addition to (∆θ,∆φ). We plotted fitted distributions using dashed

lines in Fig. 17 for various INR and a (2◦, 2◦)-neighborhood.

In addition, we tabulated (αmax, βmax) for INR ∈ {−20,−10, . . . , 40} dB to provide engineers

with statistical tools. Again, weighted averaging may be used to interpolate between INR values

listed in Table V. Like for minimum INR, ∆INRmax
ij for particular INRij is can be realized using

these fitted distributions as follows. One may draw INR from the global distribution (i.e., the

CDF in Fig. 5) as [INR]dB ∼ N (µ, σ2) and then use it when referencing Table V to fetch

αmax(∆θ,∆φ, INR) and βmax(∆θ,∆φ, INR) based on some neighborhood size (∆θ,∆φ). A

realization of the maximum INR over the (∆θ,∆φ)-neighborhood surrounding a beam pair

offering a nominal INR of INR can be drawn as

[INRmax(∆θ,∆φ, INR)]dB ∼ [INR]dB + Gamma (αmax(∆θ,∆φ, INR), βmax(∆θ,∆φ, INR))︸ ︷︷ ︸
∆INRmax(∆θ,∆φ,INR)

(33)

which can facilitate statistical analyses; (28) can be straightforwardly translated from INRmin

to INRmax, for instance. Note that INR range as a function of INR can be realized using

INRmin (∆θ,∆φ, INR) and INRmax (∆θ,∆φ, INR).



29

V. CONCLUSION

We have collected nearly 6.5 million measurements of multi-panel self-interference at 28 GHz

to better understand its spatial and statistical characteristics—providing the most comprehensive

examination of such to date. Our measurements illustrate that the degree of self-interference

coupled between colocated transmitting and receiving phased arrays tends to be higher when the

transmit and receive beams are steered toward one another but small shifts in steering direction

(on the order of one degree) can lead to significant changes in such. We have analyzed and

statistically modeled this sensitivity, providing engineers with useful insights and statistical tools

that can drive system design and evaluation, including those that may use analog and/or digital

self-interference cancellation. This measurement campaign sheds light on the efficacy of multi-

panel mmWave full-duplex systems, such full-duplex IAB proposed in 3GPP, and motivates

strategic beam steering as a potential route to mitigate self-interference without prohibitively

compromising beamforming gain. Valuable future work would investigate the impacts of beam

shape, array size, environmental reflections, and relative array geometry on self-interference.

Future directions capitalizing on this campaign include beam selection for mmWave full-duplex,

proposing a practically sound MIMO channel model for mmWave self-interference, and proto-

typing full-duplex mmWave systems.



30

APPENDIX

TABLE I

THE FITTED PARAMETERS (αrng(∆θ,∆φ), βrng(∆θ,∆φ)) FOR VARIOUS (∆θ,∆φ).

∆φ

∆θ
0◦ 1◦ 2◦ 3◦ 4◦ 5◦

0◦ — (2.74, 3.40) (4.42, 3.64) (6.73, 3.15) (9.50, 2.62) (12.50, 2.22)

1◦ (2.59, 3.19) (4.52, 4.10) (6.90, 3.82) (10.90, 2.94) (16.04, 2.25) (21.69, 1.80)

2◦ (4.04, 3.48) (6.57, 3.85) (10.69, 3.11) (17.57, 2.21) (25.96, 1.64) (34.67, 1.30)

3◦ (5.80, 3.22) (9.63, 3.16) (16.31, 2.35) (26.67, 1.63) (38.06, 1.23) (48.77, 1.01)

4◦ (7.98, 2.81) (13.91, 2.49) (23.80, 1.77) (37.32, 1.26) (50.52, 0.99) (61.80, 0.85)

5◦ (10.39, 2.44) (18.85, 2.00) (31.67, 1.42) (47.24, 1.05) (61.17, 0.86) (72.50, 0.76)

TABLE II

THE FITTED PARAMETERS
(
µmin(∆θ,∆φ), σ2

min(∆θ,∆φ)
)

FOR VARIOUS (∆θ,∆φ).

∆φ

∆θ
0◦ 1◦ 2◦ 3◦ 4◦ 5◦

0◦ (20.32, 70.69) (15.04, 102.75) (10.34, 114.62) (6.47, 112.94) (3.53, 107.37) (1.31, 101.93)

1◦ (15.58, 98.86) (8.32, 148.79) (2.30, 152.39) (−2.34, 135.13) (−5.62, 118.00) (−7.98, 105.59)

2◦ (11.58, 109.04) (3.15, 153.04) (−3.07, 141.96) (−7.56, 117.66) (−10.61, 99.81) (−12.80, 88.34)

3◦ (8.23, 106.83) (−0.88, 137.50) (−6.93, 119.30) (−11.07, 96.78) (−13.87, 82.49) (−15.89, 73.80)

4◦ (5.50, 99.76) (−3.98, 118.15) (−9.74, 99.32) (−13.57, 81.48) (−16.16, 70.95) (−18.05, 64.68)

5◦ (3.39, 93.25) (−6.27, 103.55) (−11.76, 86.70) (−15.37, 72.63) (−17.82, 64.54) (−19.63, 59.62)

TABLE III

THE FITTED PARAMETERS (αmin (∆θ,∆φ, INR) , βmin (∆θ,∆φ, INR)) FOR VARIOUS (∆θ,∆φ, INR).

INR (dB)

(∆θ,∆φ) −20 −10 0 10 20 30 40

(1◦, 1◦) (0.19, 1.34) (0.21, 11.37) (0.89, 10.27) (3.66, 4.05) (3.26, 3.91) (3.22, 2.80) (4.09, 1.47)

(2◦, 2◦) (0.18, 4.91) (0.41, 13.93) (3.06, 4.83) (10.28, 2.21) (8.67, 2.93) (5.26, 4.18) (4.15, 4.03)

(3◦, 3◦) (0.21, 9.31) (0.87, 10.20) (6.49, 2.86) (17.38, 1.58) (19.94, 1.66) (12.18, 2.74) (7.96, 3.79)

(4◦, 4◦) (0.26, 12.40) (1.86, 6.27) (10.40, 2.07) (24.37, 1.26) (31.12, 1.21) (22.78, 1.77) (20.63, 1.94)

(5◦, 5◦) (0.39, 11.99) (2.98, 4.66) (15.20, 1.57) (31.79, 1.05) (40.47, 1.01) (30.88, 1.45) (36.15, 1.27)
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TABLE IV

THE FITTED PARAMETERS
(
µmax(∆θ,∆φ), σ2

max(∆θ,∆φ)
)

FOR VARIOUS (∆θ,∆φ).

∆φ

∆θ
0◦ 1◦ 2◦ 3◦ 4◦ 5◦

0◦ (20.32, 70.69) (24.36, 44.95) (26.42, 39.02) (27.63, 36.81) (28.41, 35.64) (29.06, 34.66)

1◦ (23.84, 49.63) (26.85, 39.31) (28.64, 35.37) (29.71, 33.95) (30.41, 33.26) (31.00, 32.60)

2◦ (25.63, 45.34) (28.42, 37.00) (30.15, 33.27) (31.18, 31.99) (31.85, 31.51) (32.41, 31.00)

3◦ (26.89, 43.38) (29.61, 35.48) (31.33, 31.57) (32.35, 30.31) (33.01, 29.93) (33.56, 29.52)

4◦ (27.89, 41.95) (30.61, 33.81) (32.35, 29.51) (33.38, 28.13) (34.02, 27.79) (34.57, 27.40)

5◦ (28.72, 40.61) (31.46, 32.02) (33.23, 27.27) (34.26, 25.73) (34.90, 25.36) (35.45, 24.95)

TABLE V

THE FITTED PARAMETERS (αmax (∆θ,∆φ, INR) , βmax (∆θ,∆φ, INR)) FOR VARIOUS (∆θ,∆φ, INR).

INR (dB)

(∆θ,∆φ) −20 −10 0 10 20 30 40

(1◦, 1◦) (97.36, 0.39) (53.69, 0.53) (22.22, 0.83) (8.27, 1.23) (3.94, 1.44) (3.65, 1.09) (3.73, 0.72)

(2◦, 2◦) (125.30, 0.35) (74.38, 0.46) (35.07, 0.68) (14.26, 1.04) (6.18, 1.44) (4.83, 1.28) (4.76, 0.84)

(3◦, 3◦) (132.69, 0.36) (83.02, 0.45) (42.63, 0.64) (18.35, 0.97) (7.76, 1.44) (5.40, 1.41) (5.37, 0.88)

(4◦, 4◦) (143.23, 0.35) (92.33, 0.43) (49.46, 0.60) (22.61, 0.89) (9.53, 1.36) (5.96, 1.46) (6.10, 0.84)

(5◦, 5◦) (160.40, 0.32) (107.86, 0.39) (58.95, 0.53) (28.38, 0.78) (12.12, 1.19) (6.53, 1.47) (6.94, 0.79)

REFERENCES

[1] I. P. Roberts, J. G. Andrews, H. B. Jain, and S. Vishwanath, “Millimeter-wave full duplex radios: New challenges and

techniques,” IEEE Wireless Commun., pp. 36–43, Feb. 2021.

[2] Z. Xiao, P. Xia, and X. Xia, “Full-duplex millimeter-wave communication,” IEEE Wireless Commun., vol. 24, no. 6, pp.

136–143, Dec. 2017.

[3] X. Liu et al., “Beamforming based full-duplex for millimeter-wave communication,” Sensors, vol. 16, no. 7, p. 1130, Jul.

2016.
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