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ABSTRACT

In this paper, we present a novel active beam learning method
for in-band full-duplex wireless systems, that aims to design
transmit and receive beams which suppress self-interference
and maximize the sum spectral efficiency. Rather than rely
on explicit estimation of the downlink, uplink, and/or self-
interference channels like in most existing work, our method
instead actively probes all three channels through measure-
ments of SNR and INR over a fixed number of time slots.
Then, once this probing concludes, all collected probing
measurements are used to design transmit and receive beams
which serve downlink and uplink in a full-duplex fashion.
We realize this active beam learning scheme through a net-
work of LSTMs and DNNs, which learns to design each
probing beam pair and subsequently extract and record valu-
able information from each probing measurement such that
near-optimal serving beams can be designed following the
probing stage. Simulation indicates that our method reliably
suppresses self-interference while delivering near-maximal
SNR on the downlink and uplink with merely 3–10 prob-
ing time slots, while exhibiting robustness to measurement
noise and the structure of the self-interference channel.

1. INTRODUCTION

Upgrading base stations with the ability to transmit down-
link and receive uplink at the same time and over the same
bandwidth—i.e., in-band full-duplex capability—can yield
higher data rates, lower latency, broader coverage, and en-
hanced sensing capabilities, paving the way toward 6G net-
works [1]. The key to realizing full-duplex 6G networks
lies in effectively mitigating the self-interference inflicted
by a given base station’s transmitter onto its own receiver,
which would otherwise prohibitively degrade the uplink sig-
nal quality. Analog and digital self-interference cancella-
tion schemes have proved capable of realizing full-duplex
in conventional low-frequency base stations [2,3], but these
schemes are less suitable in current 5G and emerging 6G
radios, as they scale unfavorably to many antennas, wide
bandwidths, and high carrier frequencies [1, 4]. Motivated
by this, recent works [5–9] have harnessed beamforming
to cancel the self-interference coupled between the transmit

and receive antenna arrays of a massive multiple input mul-
tiple output (MIMO) or millimeter wave (mmWave) wire-
less system. These schemes have proven capable of reduc-
ing self-interference to below the noise floor and are thus a
promising route to unlocking full-duplex wireless systems
but exhibit noteworthy practical shortcomings.

Most notably, almost all existing full-duplex beam de-
signs rely on explicit estimation of the users’ downlink and
uplink channels as well as the MIMO self-interference chan-
nel. In massive MIMO and mmWave systems, the number
of antennas can be on the order of dozens or even hundreds,
and estimating these high-dimensional channels would thus
be resource-expensive and impractical. This is evident even
in today’s half-duplex massive MIMO and mmWave sys-
tems, which circumvent explicit estimation of downlink and
uplink channels via codebook-based beam alignment proce-
dures [10]. To our knowledge, the full-duplex beam designs
in [8,9] are the only ones which do not rely on explicit chan-
nel estimation but rather power measurements across the
downlink, uplink, and/or self-interference channels. While
experimentally validated, these methods in [8, 9] require
around 50–500 measurements per downlink-uplink user pair,
which may make them unsuitable in 6G networks, given
their resource constraints.

In this paper, we propose a novel active beam learning
method to design near-optimal transmit and receive beams
of a full-duplex base station, without explicit channel esti-
mation and with only a few measurements. Our approach
involves the base station first jointly probing the downlink,
uplink, and self-interference channels over a fixed number
of time slots, from which it extracts implicit information
about all three channels to design the final serving beams.
Structured as a sequential decision-making process, the base
station actively designs the probing beams in each time slot
based on its prior probing measurements, allowing it to tai-
lor each probing sequence to the particular user pair and
self-interference channel realization. Notably, this method
bypasses any explicit channel estimation and instead relies
solely on power measurements to design effective probing
and serving beams. Simulation results demonstrate that with
only 3–10 probing time slots, our scheme can deliver near-
maximal spectral efficiency on the downlink and uplink.
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Fig. 1. A full-duplex base station transmits downlink to one
user while receiving uplink from another user at the same
time and same frequency.

2. SYSTEM MODEL

In this work, we consider a base station serving a single-
antenna downlink user and a single-antenna uplink user si-
multaneously over the same frequency, as depicted in Fig. 1.
The base station utilizes two separate antenna arrays, one
for transmission and the other for reception; the transmit ar-
ray has Nt antennas and analog beamforming weights f ∈
CNt×1, and the receive array has Nr antennas and analog
beamforming weights w ∈ CNr×1. The signal-to-noise ra-
tios (SNRs) of the downlink and uplink are

SNRtx(f) =
PBS
tx · |h∗

txf |2
PUE
n

(1)

SNRrx(w) =
PUE
tx · |w∗hrx|2

PBS
n

, (2)

where PBS
tx is the transmit power of the base station, PUE

n

is the noise power at the downlink user, htx ∈ CNt×1 is the
downlink channel, PUE

tx is the transmit power of the uplink
user, PBS

n is the noise power at the base station, and hrx ∈
CNr×1 is the uplink channel.

Since the uplink and downlink are operating at the same
frequency band, the base station’s transmit array inflicts so-
called self-interference upon its own receive array across the
MIMO channel H ∈ CNr×Nt . While still the topic of active
research, a plausible model for the self-interference channel
H, backed by measurements [9], is a Rician fading model

H =

√
κ

κ+ 1
H̄+

√
1

κ+ 1
H̃. (3)

Here, κ is the Rician factor, H̄ is the static part of the self-
interference channel caused by near-field coupling between
the antenna arrays, and H̃ is a time-varying component that
stems from unpredictable environmental factors such as re-
flections. The strength of self-interference coupled by a
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Fig. 2. Our envisioned active beam learning solution.

given transmit beam f and receive beam w can be captured
by the interference-to-noise ratio (INR) given by

INRrx(f ,w) =
PBS
tx · |w∗Hf |2

PBS
n

. (4)

Note that there is also interference induced by the uplink
user on the downlink user, as shown in Fig. 1; the INR of
this cross-link interference will be denoted as INRtx. While
self-interference depends on the transmit and receive beams
at the base station, the cross-link interference depends only
on the users and the channel between them.

Downlink and uplink signal-to-interference-plus-noise
ratios (SINRs), which account for cross-link interference
and self-interference, respectively, can be expressed as

SINRtx(f) =
SNRtx(f)

1 + INRtx
(5)

SINRrx(f ,w) =
SNRrx(w)

1 + INRrx(f ,w)
. (6)

The achievable downlink, uplink, and sum spectral efficien-
cies, with transmit beam f and receive beam w, are then

Rtx(f) = log2(1 + SINRtx(f)) (7)
Rrx(f ,w) = log2(1 + SINRrx(f ,w)) (8)
R(f ,w) = Rtx(f) +Rrx(f ,w). (9)

3. ACTIVE BEAM LEARNING FOR FULL-DUPLEX

In this section, we aim to design f and w in order to max-
imize the sum spectral efficiency R(f ,w), without assum-
ing knowledge of the downlink, uplink, or self-interference
channels a priori. As mentioned in the introduction, most
prior approaches to this problem assumes these channels
have been reliably estimated beforehand and thus ignores
the resources consumed by such estimation. In contrast, we
consider a resource-constrained setting, wherein the base
station is allotted a fixed number of time slots to take mea-
surements of downlink, uplink, and self-interference before
designing the beams used for full-duplex data transmission
and reception. Constraining our design to a fixed overhead
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Fig. 3. An LSTM-based implementation of our proposed active beam learning solution for full-duplex wireless systems.

will thus make it more readily adopted in real-world wire-
less networks.

Our envisioned approach to this problem is shown in
Fig. 2, where the base station is allotted T time slots be-
fore designing the beams it uses to serve downlink and up-
link for L time slots. In the first time slot, the proposed
beam learning process begins with the base station measur-
ing SNRtx(f1), SNRrx(w1), and INRrx(f1,w1) using some
initial probing beam pair (f1,w1), followed by designing
the next probing beam pair (f2,w2) based on these initial
measurements. In the next time slot, the base station uses
these new probing beams to measure the SNRs and the INR,
and then similarly generates the next probing beams (f3,w3)
based on all prior measurements. This process is repeated
for all T probing time slots, after which the base station uses
information gathered from the entire probing stage to design
the serving transmit and receive beams (f⋆,w⋆), which ide-
ally maximizes the sum spectral efficiency. Designing the
sequence of probing beams {(ft,wt)}Tt=1 in the aforemen-
tioned active manner [11] will prove capable of designing
near-optimal (f⋆,w⋆), even when the probing overhead T
is relatively small.

3.1. Problem Formulation

Inspired by the work of [11], our envisioned active beam
learning problem, as just described and illustrated in Fig. 2,
can be formulated as

max
{Ft(·)}T−1

t=0 ,
G(·)

Rtx(f
⋆) +Rrx(f

⋆,w⋆) (10a)

s.t. (ft+1,wt+1) = Ft(f1:t,w1:t,y1:t) ∀ t (10b)
(f⋆,w⋆) = G(f1:T ,w1:T ,y1:T ) (10c)

∥ft∥22 = ∥f⋆∥22 = Nt ∀ t = 1, . . . , T (10d)

∥wt∥22 = ∥w⋆∥22 = Nr ∀ t = 1, . . . , T, (10e)

where yt = [SNRtx(ft),SNRrx(wt), INRrx(ft,wt)] are the
measurements taken with probing beams ft and wt during
time slot t. Our goal in this problem is to find the series of

functions {Ft(·)}T−1
t=0 and the function G(·) that produces a

final serving beam pair (f⋆,w⋆) which maximizes the sum
spectral efficiency. Here, Ft(·) is a function that outputs
the probing beams for time slot t+ 1 based on all measure-
ments collected through time t, whereas G(·) is a function
that designs the final serving beams based on all T measure-
ments from the probing phase. Note that the same functions
{Ft(·)}T−1

t=0 and G(·) are to be used across user pairs and
self-interference channel realizations.

By developing an active probing strategy in this fashion,
our aim is to collect a unique sequence of measurements tai-
lored specifically to the user pair being served. This will
allow the probing sequence to implicitly account for the
structure of the self-interference channel in relation to those
users’ downlink and uplink channels. In turn, each probing
sequence will be more targeted to the particular user pair
and self-interference channel realization (than a non-active
approach) and will thus give our active beam learning solu-
tion the potential to excel with only a few probing measure-
ments. It is also worth noting that our proposed design is
based solely on noncoherent SNR and INR measurements,
lending itself well to certain practical deployments.

3.2. LSTM-Based Active Beam Learning

To implement our active beam learning solution and (ap-
proximately) solve problem (10), we adopt the long short-
term memory (LSTM) architecture illustrated in Fig. 3, tak-
ing inspiration from [11]. LSTMs are especially well-suited
for our active beam learning task, as they can effectively
learn to extract valuable information from each probing mea-
surement and retain a record of this extracted information,
allowing us to leverage all prior probing measurements when
designing subsequent probing beams or the final serving
beams. In the remainder of this section, we will explain
our LSTM-based approach and describe how the architec-
ture shown in Fig. 3 is trained to solve problem (10).

As shown in Fig. 3, each LSTM cell indexed at time slot
t takes as input the following three sets of parameters: (i) the
downlink SNR, uplink SNR, and INR measured with prob-



ing beams ft and wt; (ii) the LSTM hidden state at time
t, denoted by st; and (iii) the LSTM cell state at time t,
denoted by ct. The LSTM cell then outputs the updated
hidden and cell states, denoted as st+1 and ct+1, respec-
tively, and feeds the new hidden state into a deep neural
network (DNN) to synthesize probing beams (ft+1,wt+1)
for use in the next time slot, t + 1. As the hidden state acts
as a memory that carries relevant information from both re-
cent and past measurements, the described procedure syn-
thesizes probing beams (ft+1,wt+1) based on all prior mea-
surements. The aforementioned process is repeated sequen-
tially across T − 1 time slots. Following the final measure-
ments at time slot T , the last cell state cT+1, which func-
tions as a long-term memory holding valuable information
gathered throughout the entire probing phase, is input to an-
other DNN to synthesize the serving beams f⋆ and w⋆. As-
suming we have models or datasets of the downlink, uplink,
and self-interference channels, the model parameters can be
optimized to maximize the sum spectral efficiency through
backpropagation. Then, after training, the model can be de-
ployed to actively generate probing beams for a given user
pair and self-interference channel realization and, based on
these probing measurements, can output a final beam pair
(f⋆,w⋆) for serving downlink and uplink in a full-duplex
fashion, realizing the solution envisioned in Fig. 2.

4. EVALUATION

To evaluate our method, we consider a 28 GHz full-duplex
base station equipped with two 8-element half-wavelength
linear arrays spaced apart horizontally 10λ, which it uses to
serve single-antenna, line-of-sight users located uniformly
between −60◦ and 60◦ in azimuth. We model the static
component of the self-interference channel H̄ with the near-
field spherical-wave model [12] and the time-varying com-
ponent H̃ as a Rayleigh fading channel drawn independently
from user pair to user pair. To account for measurement
errors that inevitably arise in practice, we assume (during
training and evaluation) that the probing measurements (in
dB) are corrupted by zero-mean Gaussian noise with vari-
ance σ2.1 To satisfy the power constraints of (10d) and
(10e), we perform appropriate normalizations to ft and wt

at each time slot. Additionally, we normalize htx, hrx, and
H such that the maximum achievable downlink and uplink
SNRs are 10 dB and the maximum possible INR is 40 dB.
Lastly, for simplicity, we assume that there is no cross-link
interference present between the downlink and uplink users.

We use TensorFlow to implement our LSTM-based ac-
tive beam learning solution. The dimensions of the LSTM
hidden and cell states, st and ct, are set to 512. The probing

1Specifically, we assume all SNR and INR measurements are of the
form

[
ˆSNRtx(ft)

]
dB

= [SNRtx(ft)]dB + N
(
0, σ2

)
, where N

(
0, σ2

)
is Gaussian with mean zero and variance σ2 and [x]dB = 10 log10(x).
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Fig. 4. Empirical CDFs of INRrx and SINRrx over 1000
random user pairs, when σ2 = 0.4 and κ = 7 dB.

beam synthesis and final beam synthesis DNNs comprise
of three hidden layers, each containing 1024 neurons with
ReLU activation. Note that the output dimension of each of
these DNNs is 2×(Nt+Nr) in order to account for both the
real and imaginary components of the complex beamform-
ing weights. During training, we utilize Adam optimizer
with a learning rate of 10−4 and a mini-batch of size 128.
As described, we set the loss function to −R(f⋆,w⋆) to op-
timize the model to maximize the sum spectral efficiency.

We compare our approach against two baselines: (i)
maximum ratio transmission (MRT) plus maximum ratio
combining (MRC), which steers beams directly toward each
user to maximize their SNRs, but ignores self-interference,
and (ii) the full-duplex capacity, achieved by MRT+MRC in
the absence of self-interference. Fig. 4 presents the empir-
ical cumulative distribution functions (CDFs) of INRrx and
SINRrx over 1000 random user pairs, when the measure-
ment noise variance is σ2 = 0.4 and the self-interference
channel Rician factor is κ = 7 dB. The first key observation
to make is that self-interference is often 10–20 dB above
the noise floor with MRT+MRC, making it unsuitable for
full-duplex operation. In contrast, active beam learning is
able to design serving beams (f⋆,w⋆) that are far more ro-
bust to self-interference with only 3–10 time slots for prob-
ing. With T = 10, remarkably all 1000 randomly gener-
ated user pairs enjoy self-interference below the noise floor.
This translates to higher uplink SINRs, which closely hugs
the upper bound of 10 dB as the allotted probing time is in-
creased to T = 10. Although MRT+MRC maximizes SNR,
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its high self-interference leads to poor uplink SINR.
In Fig. 5, we further investigated the impact of the struc-

ture of the self-interference channel H on performance. Fix-
ing σ2 = 0.4, we plot the sum spectral efficiency as a func-
tion of the self-interference channel Rician factor κ, aver-
aged over 1000 random user pairs. Recalling (3), increas-
ing κ results in a more deterministic, spherical-wave self-
interference channel, while a lower value leads to a more
random, Gaussian channel. From the plot, it is evident that
our method achieves higher sum spectral efficiency as κ in-
creases; we attribute this to two main reasons. First, from
the dashed MRT+MRC curve, we can see that a spherical-
wave channel is structurally more favorable on average than
a Gaussian one, also observed in [5]. Second, the perfor-
mance of active beam learning increases with κ due to the
simple fact that the channel becomes more deterministic,
making it easier to learn probing strategies and final synthe-
sis of (f⋆,w⋆). With that being said, even when κ is low
and H is heavily Gaussian, active beam learning can still
provide performance approaching the full-duplex capacity
with sufficient probing time T . Altogether, these numeri-
cal results suggest that active beam learning is capable of
intelligently probing to strategically design serving beams
(f⋆,w⋆) which suppress self-interference without compro-
mising downlink and uplink SNR.

5. CONCLUSION AND FUTURE WORK

This work introduced an active beam learning scheme that
aims to maximize the sum spectral efficiency of a full-duplex
system. This is realized using a network of LSTMs and
DNNs which learns to actively probe the downlink, uplink,
and self-interference channels, rather than explicitly esti-
mate them. We demonstrated that our approach is able to

suppress self-interference to below noise and attain sum spec-
tral efficiencies that approach the full-duplex capacity when
the probing time is sufficiently large. Our results also illus-
trate its robustness to measurement noise and to the struc-
ture of self-interference. Valuable future work may adapt
our approach to scale more favorably to many users or to
exploit temporal or spatial correlations in the system.
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